Update app.py
Browse files
app.py
CHANGED
|
@@ -1,60 +1,76 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoTokenizer
|
| 3 |
from optimum.intel import OVModelForCausalLM
|
|
|
|
|
|
|
|
|
|
| 4 |
import warnings
|
| 5 |
|
| 6 |
warnings.filterwarnings("ignore", category=DeprecationWarning, message="__array__ implementation doesn't accept a copy keyword")
|
| 7 |
|
| 8 |
-
#
|
| 9 |
model_id = "hsuwill000/DeepSeek-R1-Distill-Qwen-1.5B-openvino"
|
| 10 |
print("Loading model...")
|
| 11 |
model = OVModelForCausalLM.from_pretrained(model_id, device_map="auto")
|
| 12 |
print("Loading tokenizer...")
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
# 對話歷史記錄
|
| 16 |
history = []
|
| 17 |
|
| 18 |
-
#
|
| 19 |
def respond(prompt):
|
| 20 |
-
global history
|
| 21 |
-
|
| 22 |
-
# 轉換 history 為 messages 格式
|
| 23 |
-
messages = [{"role": "system", "content": "Answer the question in English only."}]
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
messages.append({"role": "assistant", "content": assistant_text})
|
| 29 |
-
|
| 30 |
-
# 加入當前輸入
|
| 31 |
-
messages.append({"role": "user", "content": prompt})
|
| 32 |
|
| 33 |
-
#
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
# 更新 history
|
| 56 |
history.append((prompt, response))
|
| 57 |
-
|
| 58 |
return response
|
| 59 |
|
| 60 |
# 清除歷史記錄
|
|
@@ -65,8 +81,8 @@ def clear_history():
|
|
| 65 |
|
| 66 |
# Gradio 介面
|
| 67 |
with gr.Blocks() as demo:
|
| 68 |
-
gr.Markdown("# DeepSeek-R1-Distill-Qwen-1.5B-openvino")
|
| 69 |
-
|
| 70 |
with gr.Tabs():
|
| 71 |
with gr.TabItem("聊天"):
|
| 72 |
chat_if = gr.Interface(
|
|
@@ -74,14 +90,13 @@ with gr.Blocks() as demo:
|
|
| 74 |
inputs=gr.Textbox(label="Prompt", placeholder="請輸入訊息..."),
|
| 75 |
outputs=gr.Textbox(label="Response", interactive=False),
|
| 76 |
api_name="hchat",
|
| 77 |
-
title="DeepSeek-R1
|
| 78 |
-
description="
|
| 79 |
)
|
| 80 |
-
|
| 81 |
with gr.Row():
|
| 82 |
clear_button = gr.Button("🧹 Clear History")
|
| 83 |
|
| 84 |
-
# 點擊按鈕清除 history
|
| 85 |
clear_button.click(fn=clear_history, inputs=[], outputs=[])
|
| 86 |
|
| 87 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoTokenizer
|
| 3 |
from optimum.intel import OVModelForCausalLM
|
| 4 |
+
from sentence_transformers import SentenceTransformer
|
| 5 |
+
import faiss
|
| 6 |
+
import numpy as np
|
| 7 |
import warnings
|
| 8 |
|
| 9 |
warnings.filterwarnings("ignore", category=DeprecationWarning, message="__array__ implementation doesn't accept a copy keyword")
|
| 10 |
|
| 11 |
+
# 載入 OpenVINO 語言模型
|
| 12 |
model_id = "hsuwill000/DeepSeek-R1-Distill-Qwen-1.5B-openvino"
|
| 13 |
print("Loading model...")
|
| 14 |
model = OVModelForCausalLM.from_pretrained(model_id, device_map="auto")
|
| 15 |
print("Loading tokenizer...")
|
| 16 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
|
| 17 |
|
| 18 |
+
# 載入向量模型 (用來將文本轉換為向量)
|
| 19 |
+
encoder = SentenceTransformer("all-MiniLM-L6-v2")
|
| 20 |
+
|
| 21 |
+
# FAQ 知識庫 (問題 + 回答)
|
| 22 |
+
faq_data = [
|
| 23 |
+
("What is FAISS?", "FAISS is a library for efficient similarity search and clustering of dense vectors."),
|
| 24 |
+
("How does FAISS work?", "FAISS uses indexing structures to quickly retrieve the nearest neighbors of a query vector."),
|
| 25 |
+
("Can FAISS run on GPU?", "Yes, FAISS supports GPU acceleration for faster computation."),
|
| 26 |
+
("What is OpenVINO?", "OpenVINO is an inference engine optimized for Intel hardware."),
|
| 27 |
+
("How to fine-tune a model?", "Fine-tuning involves training a model on a specific dataset to adapt it to a particular task."),
|
| 28 |
+
("What is the best way to optimize inference speed?", "Using quantization and model distillation can significantly improve inference speed.")
|
| 29 |
+
]
|
| 30 |
+
|
| 31 |
+
# 轉換 FAQ 問題為向量
|
| 32 |
+
faq_questions = [q for q, _ in faq_data]
|
| 33 |
+
faq_answers = [a for _, a in faq_data]
|
| 34 |
+
faq_vectors = np.array(encoder.encode(faq_questions)).astype("float32")
|
| 35 |
+
|
| 36 |
+
# 建立 FAISS 索引
|
| 37 |
+
d = faq_vectors.shape[1] # 向量維度
|
| 38 |
+
index = faiss.IndexFlatL2(d)
|
| 39 |
+
index.add(faq_vectors)
|
| 40 |
+
|
| 41 |
# 對話歷史記錄
|
| 42 |
history = []
|
| 43 |
|
| 44 |
+
# 查詢函數 (先檢索 FAQ,無匹配則交給模型)
|
| 45 |
def respond(prompt):
|
| 46 |
+
global history
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
# 將輸入轉換為向量,並用 FAISS 查詢
|
| 49 |
+
query_vector = np.array(encoder.encode([prompt])).astype("float32")
|
| 50 |
+
D, I = index.search(query_vector, 1) # 找最相近的 FAQ
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
if D[0][0] < 1.0: # 設定相似度閾值 (數值越低代表越相似) (5.0太大 啥問題都會丟給FAISS)
|
| 53 |
+
response = faq_answers[I[0][0]] # 直接回應 FAQ 答案
|
| 54 |
+
else:
|
| 55 |
+
# 若 FAQ 沒有匹配,則使用語言模型
|
| 56 |
+
messages = [{"role": "system", "content": "Answer the question in English only."}]
|
| 57 |
+
for user_text, assistant_text in history:
|
| 58 |
+
messages.append({"role": "user", "content": user_text})
|
| 59 |
+
messages.append({"role": "assistant", "content": assistant_text})
|
| 60 |
+
messages.append({"role": "user", "content": prompt})
|
| 61 |
+
|
| 62 |
+
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 63 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 64 |
+
generated_ids = model.generate(
|
| 65 |
+
**model_inputs,
|
| 66 |
+
max_new_tokens=512,
|
| 67 |
+
temperature=0.7,
|
| 68 |
+
top_p=0.9,
|
| 69 |
+
do_sample=True
|
| 70 |
+
)
|
| 71 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
| 72 |
+
|
|
|
|
|
|
|
| 73 |
history.append((prompt, response))
|
|
|
|
| 74 |
return response
|
| 75 |
|
| 76 |
# 清除歷史記錄
|
|
|
|
| 81 |
|
| 82 |
# Gradio 介面
|
| 83 |
with gr.Blocks() as demo:
|
| 84 |
+
gr.Markdown("# DeepSeek-R1-Distill-Qwen-1.5B-openvino with history,FAISS ")
|
| 85 |
+
|
| 86 |
with gr.Tabs():
|
| 87 |
with gr.TabItem("聊天"):
|
| 88 |
chat_if = gr.Interface(
|
|
|
|
| 90 |
inputs=gr.Textbox(label="Prompt", placeholder="請輸入訊息..."),
|
| 91 |
outputs=gr.Textbox(label="Response", interactive=False),
|
| 92 |
api_name="hchat",
|
| 93 |
+
title="DeepSeek-R1 with FAISS FAQ",
|
| 94 |
+
description="This chatbot first searches an FAQ database using FAISS, then responds using a language model if no match is found."
|
| 95 |
)
|
| 96 |
+
|
| 97 |
with gr.Row():
|
| 98 |
clear_button = gr.Button("🧹 Clear History")
|
| 99 |
|
|
|
|
| 100 |
clear_button.click(fn=clear_history, inputs=[], outputs=[])
|
| 101 |
|
| 102 |
if __name__ == "__main__":
|