Update app.py
Browse files
app.py
CHANGED
|
@@ -8,77 +8,61 @@ from huggingface_hub import snapshot_download
|
|
| 8 |
import openvino.runtime as ov
|
| 9 |
from typing import Optional, Dict
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
model_id = "Disty0/LCM_SoteMix"
|
| 14 |
-
#model_id = "Disty0/sotediffusion-v2" #不可
|
| 15 |
|
| 16 |
-
#1024*512 記憶體不足
|
| 17 |
-
HIGH=768
|
| 18 |
-
WIDTH=512
|
| 19 |
|
| 20 |
batch_size = -1
|
| 21 |
-
"""
|
| 22 |
-
class CustomOVModelVaeDecoder(OVModelVaeDecoder):
|
| 23 |
-
def __init__(
|
| 24 |
-
self, model: ov.Model, parent_model: OVBaseModel, ov_config: Optional[Dict[str, str]] = None, model_dir: str = None,
|
| 25 |
-
):
|
| 26 |
-
super(OVModelVaeDecoder, self).__init__(model, parent_model, ov_config, "vae_decoder", model_dir)
|
| 27 |
-
"""
|
| 28 |
|
| 29 |
pipe = OVStableDiffusionPipeline.from_pretrained(
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
|
| 40 |
taesd_dir = snapshot_download(repo_id="deinferno/taesd-openvino")
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
parent_model = pipe,
|
| 44 |
-
model_dir = taesd_dir
|
| 45 |
-
)
|
| 46 |
-
"""
|
| 47 |
pipe.vae_decoder = OVModelVaeDecoder(
|
| 48 |
-
model=OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"),
|
| 49 |
-
parent_model=pipe,
|
| 50 |
-
ov_config=None, #
|
| 51 |
-
model_type="vae_decoder", #
|
| 52 |
model_dir=taesd_dir
|
| 53 |
)
|
| 54 |
|
| 55 |
-
|
| 56 |
-
pipe.
|
| 57 |
-
#pipe.load_textual_inversion("./
|
| 58 |
-
#
|
| 59 |
-
|
| 60 |
-
#pipe.load_textual_inversion("sd-concepts-library/
|
| 61 |
-
#pipe.load_textual_inversion("sd-concepts-library/
|
| 62 |
-
#pipe.load_textual_inversion("sd-concepts-library/agm-style-nao")
|
| 63 |
-
|
| 64 |
|
| 65 |
pipe.compile()
|
| 66 |
|
| 67 |
-
prompt=""
|
| 68 |
-
negative_prompt="(worst quality, low quality, lowres), zombie, interlocked fingers,"
|
| 69 |
-
|
| 70 |
-
def infer(prompt,negative_prompt):
|
| 71 |
|
|
|
|
| 72 |
image = pipe(
|
| 73 |
-
prompt
|
| 74 |
-
negative_prompt
|
| 75 |
-
width
|
| 76 |
-
height
|
| 77 |
guidance_scale=1.0,
|
| 78 |
num_inference_steps=4,
|
| 79 |
num_images_per_prompt=1,
|
| 80 |
-
).images[0]
|
| 81 |
-
|
| 82 |
return image
|
| 83 |
|
| 84 |
|
|
@@ -89,24 +73,23 @@ examples = [
|
|
| 89 |
"(illustration, 8k CG, extremely detailed),(whimsical),catgirl,teenage girl,playing in the snow,winter wonderland,snow-covered trees,soft pastel colors,gentle lighting,sparkling snow,joyful,magical atmosphere,highly detailed,fluffy cat ears and tail,intricate winter clothing,shallow depth of field,watercolor techniques,close-up shot,slightly tilted angle,fairy tale architecture,nostalgic,playful,winter magic,(masterpiece:2),best quality,ultra highres,original,extremely detailed,perfect lighting,",
|
| 90 |
]
|
| 91 |
|
| 92 |
-
css="""
|
| 93 |
#col-container {
|
| 94 |
margin: 0 auto;
|
| 95 |
max-width: 520px;
|
| 96 |
}
|
| 97 |
"""
|
| 98 |
|
| 99 |
-
|
| 100 |
power_device = "CPU"
|
| 101 |
|
| 102 |
with gr.Blocks(css=css) as demo:
|
| 103 |
-
|
| 104 |
with gr.Column(elem_id="col-container"):
|
| 105 |
gr.Markdown(f"""
|
| 106 |
# Disty0/LCM_SoteMix {WIDTH}x{HIGH}
|
| 107 |
Currently running on {power_device}.
|
| 108 |
""")
|
| 109 |
-
|
| 110 |
with gr.Row():
|
| 111 |
prompt = gr.Text(
|
| 112 |
label="Prompt",
|
|
@@ -114,22 +97,22 @@ with gr.Blocks(css=css) as demo:
|
|
| 114 |
max_lines=1,
|
| 115 |
placeholder="Enter your prompt",
|
| 116 |
container=False,
|
| 117 |
-
)
|
| 118 |
run_button = gr.Button("Run", scale=0)
|
| 119 |
-
|
| 120 |
result = gr.Image(label="Result", show_label=False)
|
| 121 |
|
| 122 |
gr.Examples(
|
| 123 |
-
examples
|
| 124 |
-
fn
|
| 125 |
-
inputs
|
| 126 |
-
outputs
|
| 127 |
)
|
| 128 |
|
| 129 |
run_button.click(
|
| 130 |
-
fn
|
| 131 |
-
inputs
|
| 132 |
-
outputs
|
| 133 |
)
|
| 134 |
|
| 135 |
-
demo.queue().launch()
|
|
|
|
| 8 |
import openvino.runtime as ov
|
| 9 |
from typing import Optional, Dict
|
| 10 |
|
|
|
|
|
|
|
| 11 |
model_id = "Disty0/LCM_SoteMix"
|
| 12 |
+
# model_id = "Disty0/sotediffusion-v2" #不可
|
| 13 |
|
| 14 |
+
# 1024*512 記憶體不足
|
| 15 |
+
HIGH = 768
|
| 16 |
+
WIDTH = 512
|
| 17 |
|
| 18 |
batch_size = -1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
pipe = OVStableDiffusionPipeline.from_pretrained(
|
| 21 |
+
model_id,
|
| 22 |
+
compile=False,
|
| 23 |
+
ov_config={"CACHE_DIR": ""},
|
| 24 |
+
torch_dtype=torch.int8, # 快
|
| 25 |
+
# torch_dtype=torch.bfloat16, # 中
|
| 26 |
+
# variant="fp16",
|
| 27 |
+
# torch_dtype=torch.IntTensor, # 慢
|
| 28 |
+
use_safetensors=False,
|
| 29 |
+
)
|
| 30 |
|
| 31 |
taesd_dir = snapshot_download(repo_id="deinferno/taesd-openvino")
|
| 32 |
+
|
| 33 |
+
# 這裡直接使用 OVModelVaeDecoder,而不是自訂的 CustomOVModelVaeDecoder
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
pipe.vae_decoder = OVModelVaeDecoder(
|
| 35 |
+
model=OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"),
|
| 36 |
+
parent_model=pipe,
|
| 37 |
+
ov_config=None, # 如果沒有配置,傳入 None
|
| 38 |
+
model_type="vae_decoder", # 保持與原本類型一致
|
| 39 |
model_dir=taesd_dir
|
| 40 |
)
|
| 41 |
|
| 42 |
+
pipe.reshape(batch_size=-1, height=HIGH, width=WIDTH, num_images_per_prompt=1)
|
| 43 |
+
# pipe.load_textual_inversion("./badhandv4.pt", "badhandv4")
|
| 44 |
+
# pipe.load_textual_inversion("./Konpeto.pt", "Konpeto")
|
| 45 |
+
# <shigure-ui-style>
|
| 46 |
+
# pipe.load_textual_inversion("sd-concepts-library/shigure-ui-style")
|
| 47 |
+
# pipe.load_textual_inversion("sd-concepts-library/ruan-jia")
|
| 48 |
+
# pipe.load_textual_inversion("sd-concepts-library/agm-style-nao")
|
|
|
|
|
|
|
| 49 |
|
| 50 |
pipe.compile()
|
| 51 |
|
| 52 |
+
prompt = ""
|
| 53 |
+
negative_prompt = "(worst quality, low quality, lowres), zombie, interlocked fingers,"
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
def infer(prompt, negative_prompt):
|
| 56 |
image = pipe(
|
| 57 |
+
prompt=prompt,
|
| 58 |
+
negative_prompt=negative_prompt,
|
| 59 |
+
width=WIDTH,
|
| 60 |
+
height=HIGH,
|
| 61 |
guidance_scale=1.0,
|
| 62 |
num_inference_steps=4,
|
| 63 |
num_images_per_prompt=1,
|
| 64 |
+
).images[0]
|
| 65 |
+
|
| 66 |
return image
|
| 67 |
|
| 68 |
|
|
|
|
| 73 |
"(illustration, 8k CG, extremely detailed),(whimsical),catgirl,teenage girl,playing in the snow,winter wonderland,snow-covered trees,soft pastel colors,gentle lighting,sparkling snow,joyful,magical atmosphere,highly detailed,fluffy cat ears and tail,intricate winter clothing,shallow depth of field,watercolor techniques,close-up shot,slightly tilted angle,fairy tale architecture,nostalgic,playful,winter magic,(masterpiece:2),best quality,ultra highres,original,extremely detailed,perfect lighting,",
|
| 74 |
]
|
| 75 |
|
| 76 |
+
css = """
|
| 77 |
#col-container {
|
| 78 |
margin: 0 auto;
|
| 79 |
max-width: 520px;
|
| 80 |
}
|
| 81 |
"""
|
| 82 |
|
|
|
|
| 83 |
power_device = "CPU"
|
| 84 |
|
| 85 |
with gr.Blocks(css=css) as demo:
|
| 86 |
+
|
| 87 |
with gr.Column(elem_id="col-container"):
|
| 88 |
gr.Markdown(f"""
|
| 89 |
# Disty0/LCM_SoteMix {WIDTH}x{HIGH}
|
| 90 |
Currently running on {power_device}.
|
| 91 |
""")
|
| 92 |
+
|
| 93 |
with gr.Row():
|
| 94 |
prompt = gr.Text(
|
| 95 |
label="Prompt",
|
|
|
|
| 97 |
max_lines=1,
|
| 98 |
placeholder="Enter your prompt",
|
| 99 |
container=False,
|
| 100 |
+
)
|
| 101 |
run_button = gr.Button("Run", scale=0)
|
| 102 |
+
|
| 103 |
result = gr.Image(label="Result", show_label=False)
|
| 104 |
|
| 105 |
gr.Examples(
|
| 106 |
+
examples=examples,
|
| 107 |
+
fn=infer,
|
| 108 |
+
inputs=[prompt],
|
| 109 |
+
outputs=[result]
|
| 110 |
)
|
| 111 |
|
| 112 |
run_button.click(
|
| 113 |
+
fn=infer,
|
| 114 |
+
inputs=[prompt],
|
| 115 |
+
outputs=[result]
|
| 116 |
)
|
| 117 |
|
| 118 |
+
demo.queue().launch()
|