Update app.py
Browse files
app.py
CHANGED
|
@@ -2,13 +2,13 @@ import gradio as gr
|
|
| 2 |
from gradio_client import Client
|
| 3 |
from PIL import Image
|
| 4 |
import os
|
| 5 |
-
import time
|
| 6 |
import traceback
|
| 7 |
import random
|
| 8 |
import time
|
| 9 |
|
|
|
|
| 10 |
clients = [
|
| 11 |
-
Client("hsuwill000/LCM_SoteMix_OpenVINO_CPU_Space_TAESD")
|
| 12 |
Client("HelloSun/LCM_Dreamshaper_v7-int8-ov")
|
| 13 |
]
|
| 14 |
|
|
@@ -19,10 +19,8 @@ count = 0
|
|
| 19 |
def infer_gradio(prompt: str):
|
| 20 |
global count
|
| 21 |
random.seed(time.time())
|
| 22 |
-
#
|
| 23 |
-
|
| 24 |
-
client = random.choice(clients)
|
| 25 |
-
|
| 26 |
|
| 27 |
# Prepare the inputs for the prediction
|
| 28 |
inputs = {
|
|
@@ -31,11 +29,11 @@ def infer_gradio(prompt: str):
|
|
| 31 |
}
|
| 32 |
|
| 33 |
try:
|
| 34 |
-
# Send the request to the model and receive the image
|
| 35 |
result = client.predict(inputs, api_name="/infer")
|
| 36 |
|
| 37 |
-
#
|
| 38 |
-
image = Image.open(result)
|
| 39 |
|
| 40 |
# Create a unique filename to save the image
|
| 41 |
filename = f"img_{count:08d}.jpg"
|
|
@@ -62,13 +60,13 @@ with gr.Blocks() as demo:
|
|
| 62 |
with gr.Row(): # Use a Row to place the prompt input and the button side by side
|
| 63 |
prompt_input = gr.Textbox(
|
| 64 |
label="Enter Your Prompt",
|
| 65 |
-
show_label
|
| 66 |
placeholder="Type your prompt for image generation here",
|
| 67 |
lines=1, # Set the input to be only one line tall
|
| 68 |
interactive=True # Allow user to interact with the textbox
|
| 69 |
)
|
| 70 |
|
| 71 |
-
# Change the button text to "RUN
|
| 72 |
run_button = gr.Button("RUN")
|
| 73 |
|
| 74 |
# Output image display area
|
|
@@ -77,4 +75,4 @@ with gr.Blocks() as demo:
|
|
| 77 |
# Connecting the button click to the image generation function
|
| 78 |
run_button.click(infer_gradio, inputs=prompt_input, outputs=output_image)
|
| 79 |
|
| 80 |
-
demo.launch()
|
|
|
|
| 2 |
from gradio_client import Client
|
| 3 |
from PIL import Image
|
| 4 |
import os
|
|
|
|
| 5 |
import traceback
|
| 6 |
import random
|
| 7 |
import time
|
| 8 |
|
| 9 |
+
# Create Client instances for the repositories
|
| 10 |
clients = [
|
| 11 |
+
Client("hsuwill000/LCM_SoteMix_OpenVINO_CPU_Space_TAESD"),
|
| 12 |
Client("HelloSun/LCM_Dreamshaper_v7-int8-ov")
|
| 13 |
]
|
| 14 |
|
|
|
|
| 19 |
def infer_gradio(prompt: str):
|
| 20 |
global count
|
| 21 |
random.seed(time.time())
|
| 22 |
+
# Randomly choose a client
|
| 23 |
+
client = random.choice(clients)
|
|
|
|
|
|
|
| 24 |
|
| 25 |
# Prepare the inputs for the prediction
|
| 26 |
inputs = {
|
|
|
|
| 29 |
}
|
| 30 |
|
| 31 |
try:
|
| 32 |
+
# Send the request to the model and receive the result (image URL or file path)
|
| 33 |
result = client.predict(inputs, api_name="/infer")
|
| 34 |
|
| 35 |
+
# Assuming the result is a URL or path, use it to open the image
|
| 36 |
+
image = Image.open(result) # If the result is a URL, ensure you download it first
|
| 37 |
|
| 38 |
# Create a unique filename to save the image
|
| 39 |
filename = f"img_{count:08d}.jpg"
|
|
|
|
| 60 |
with gr.Row(): # Use a Row to place the prompt input and the button side by side
|
| 61 |
prompt_input = gr.Textbox(
|
| 62 |
label="Enter Your Prompt",
|
| 63 |
+
show_label=False,
|
| 64 |
placeholder="Type your prompt for image generation here",
|
| 65 |
lines=1, # Set the input to be only one line tall
|
| 66 |
interactive=True # Allow user to interact with the textbox
|
| 67 |
)
|
| 68 |
|
| 69 |
+
# Change the button text to "RUN" and align it with the prompt input
|
| 70 |
run_button = gr.Button("RUN")
|
| 71 |
|
| 72 |
# Output image display area
|
|
|
|
| 75 |
# Connecting the button click to the image generation function
|
| 76 |
run_button.click(infer_gradio, inputs=prompt_input, outputs=output_image)
|
| 77 |
|
| 78 |
+
demo.launch()
|