Spaces:
Runtime error
Runtime error
| import functools | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.nn.utils import spectral_norm | |
| ### single layers | |
| def conv2d(*args, **kwargs): | |
| return spectral_norm(nn.Conv2d(*args, **kwargs)) | |
| def convTranspose2d(*args, **kwargs): | |
| return spectral_norm(nn.ConvTranspose2d(*args, **kwargs)) | |
| def embedding(*args, **kwargs): | |
| return spectral_norm(nn.Embedding(*args, **kwargs)) | |
| def linear(*args, **kwargs): | |
| return spectral_norm(nn.Linear(*args, **kwargs)) | |
| def NormLayer(c, mode='batch'): | |
| if mode == 'group': | |
| return nn.GroupNorm(c//2, c) | |
| elif mode == 'batch': | |
| return nn.BatchNorm2d(c) | |
| ### Activations | |
| class GLU(nn.Module): | |
| def forward(self, x): | |
| nc = x.size(1) | |
| assert nc % 2 == 0, 'channels dont divide 2!' | |
| nc = int(nc/2) | |
| return x[:, :nc] * torch.sigmoid(x[:, nc:]) | |
| class Swish(nn.Module): | |
| def forward(self, feat): | |
| return feat * torch.sigmoid(feat) | |
| ### Upblocks | |
| class InitLayer(nn.Module): | |
| def __init__(self, nz, channel, sz=4): | |
| super().__init__() | |
| self.init = nn.Sequential( | |
| convTranspose2d(nz, channel*2, sz, 1, 0, bias=False), | |
| NormLayer(channel*2), | |
| GLU(), | |
| ) | |
| def forward(self, noise): | |
| noise = noise.view(noise.shape[0], -1, 1, 1) | |
| return self.init(noise) | |
| def UpBlockSmall(in_planes, out_planes): | |
| block = nn.Sequential( | |
| nn.Upsample(scale_factor=2, mode='nearest'), | |
| conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False), | |
| NormLayer(out_planes*2), GLU()) | |
| return block | |
| class UpBlockSmallCond(nn.Module): | |
| def __init__(self, in_planes, out_planes, z_dim): | |
| super().__init__() | |
| self.in_planes = in_planes | |
| self.out_planes = out_planes | |
| self.up = nn.Upsample(scale_factor=2, mode='nearest') | |
| self.conv = conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False) | |
| which_bn = functools.partial(CCBN, which_linear=linear, input_size=z_dim) | |
| self.bn = which_bn(2*out_planes) | |
| self.act = GLU() | |
| def forward(self, x, c): | |
| x = self.up(x) | |
| x = self.conv(x) | |
| x = self.bn(x, c) | |
| x = self.act(x) | |
| return x | |
| def UpBlockBig(in_planes, out_planes): | |
| block = nn.Sequential( | |
| nn.Upsample(scale_factor=2, mode='nearest'), | |
| conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False), | |
| NoiseInjection(), | |
| NormLayer(out_planes*2), GLU(), | |
| conv2d(out_planes, out_planes*2, 3, 1, 1, bias=False), | |
| NoiseInjection(), | |
| NormLayer(out_planes*2), GLU() | |
| ) | |
| return block | |
| class UpBlockBigCond(nn.Module): | |
| def __init__(self, in_planes, out_planes, z_dim): | |
| super().__init__() | |
| self.in_planes = in_planes | |
| self.out_planes = out_planes | |
| self.up = nn.Upsample(scale_factor=2, mode='nearest') | |
| self.conv1 = conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False) | |
| self.conv2 = conv2d(out_planes, out_planes*2, 3, 1, 1, bias=False) | |
| which_bn = functools.partial(CCBN, which_linear=linear, input_size=z_dim) | |
| self.bn1 = which_bn(2*out_planes) | |
| self.bn2 = which_bn(2*out_planes) | |
| self.act = GLU() | |
| self.noise = NoiseInjection() | |
| def forward(self, x, c): | |
| # block 1 | |
| x = self.up(x) | |
| x = self.conv1(x) | |
| x = self.noise(x) | |
| x = self.bn1(x, c) | |
| x = self.act(x) | |
| # block 2 | |
| x = self.conv2(x) | |
| x = self.noise(x) | |
| x = self.bn2(x, c) | |
| x = self.act(x) | |
| return x | |
| class SEBlock(nn.Module): | |
| def __init__(self, ch_in, ch_out): | |
| super().__init__() | |
| self.main = nn.Sequential( | |
| nn.AdaptiveAvgPool2d(4), | |
| conv2d(ch_in, ch_out, 4, 1, 0, bias=False), | |
| Swish(), | |
| conv2d(ch_out, ch_out, 1, 1, 0, bias=False), | |
| nn.Sigmoid(), | |
| ) | |
| def forward(self, feat_small, feat_big): | |
| return feat_big * self.main(feat_small) | |
| ### Downblocks | |
| class SeparableConv2d(nn.Module): | |
| def __init__(self, in_channels, out_channels, kernel_size, bias=False): | |
| super(SeparableConv2d, self).__init__() | |
| self.depthwise = conv2d(in_channels, in_channels, kernel_size=kernel_size, | |
| groups=in_channels, bias=bias, padding=1) | |
| self.pointwise = conv2d(in_channels, out_channels, | |
| kernel_size=1, bias=bias) | |
| def forward(self, x): | |
| out = self.depthwise(x) | |
| out = self.pointwise(out) | |
| return out | |
| class DownBlock(nn.Module): | |
| def __init__(self, in_planes, out_planes, separable=False): | |
| super().__init__() | |
| if not separable: | |
| self.main = nn.Sequential( | |
| conv2d(in_planes, out_planes, 4, 2, 1), | |
| NormLayer(out_planes), | |
| nn.LeakyReLU(0.2, inplace=True), | |
| ) | |
| else: | |
| self.main = nn.Sequential( | |
| SeparableConv2d(in_planes, out_planes, 3), | |
| NormLayer(out_planes), | |
| nn.LeakyReLU(0.2, inplace=True), | |
| nn.AvgPool2d(2, 2), | |
| ) | |
| def forward(self, feat): | |
| return self.main(feat) | |
| class DownBlockPatch(nn.Module): | |
| def __init__(self, in_planes, out_planes, separable=False): | |
| super().__init__() | |
| self.main = nn.Sequential( | |
| DownBlock(in_planes, out_planes, separable), | |
| conv2d(out_planes, out_planes, 1, 1, 0, bias=False), | |
| NormLayer(out_planes), | |
| nn.LeakyReLU(0.2, inplace=True), | |
| ) | |
| def forward(self, feat): | |
| return self.main(feat) | |
| ### CSM | |
| class ResidualConvUnit(nn.Module): | |
| def __init__(self, cin, activation, bn): | |
| super().__init__() | |
| self.conv = nn.Conv2d(cin, cin, kernel_size=3, stride=1, padding=1, bias=True) | |
| self.skip_add = nn.quantized.FloatFunctional() | |
| def forward(self, x): | |
| return self.skip_add.add(self.conv(x), x) | |
| class FeatureFusionBlock(nn.Module): | |
| def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, lowest=False): | |
| super().__init__() | |
| self.deconv = deconv | |
| self.align_corners = align_corners | |
| self.expand = expand | |
| out_features = features | |
| if self.expand==True: | |
| out_features = features//2 | |
| self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1) | |
| self.skip_add = nn.quantized.FloatFunctional() | |
| def forward(self, *xs): | |
| output = xs[0] | |
| if len(xs) == 2: | |
| output = self.skip_add.add(output, xs[1]) | |
| output = nn.functional.interpolate( | |
| output, scale_factor=2, mode="bilinear", align_corners=self.align_corners | |
| ) | |
| output = self.out_conv(output) | |
| return output | |
| ### Misc | |
| class NoiseInjection(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.zeros(1), requires_grad=True) | |
| def forward(self, feat, noise=None): | |
| if noise is None: | |
| batch, _, height, width = feat.shape | |
| noise = torch.randn(batch, 1, height, width).to(feat.device) | |
| return feat + self.weight * noise | |
| class CCBN(nn.Module): | |
| ''' conditional batchnorm ''' | |
| def __init__(self, output_size, input_size, which_linear, eps=1e-5, momentum=0.1): | |
| super().__init__() | |
| self.output_size, self.input_size = output_size, input_size | |
| # Prepare gain and bias layers | |
| self.gain = which_linear(input_size, output_size) | |
| self.bias = which_linear(input_size, output_size) | |
| # epsilon to avoid dividing by 0 | |
| self.eps = eps | |
| # Momentum | |
| self.momentum = momentum | |
| self.register_buffer('stored_mean', torch.zeros(output_size)) | |
| self.register_buffer('stored_var', torch.ones(output_size)) | |
| def forward(self, x, y): | |
| # Calculate class-conditional gains and biases | |
| gain = (1 + self.gain(y)).view(y.size(0), -1, 1, 1) | |
| bias = self.bias(y).view(y.size(0), -1, 1, 1) | |
| out = F.batch_norm(x, self.stored_mean, self.stored_var, None, None, | |
| self.training, 0.1, self.eps) | |
| return out * gain + bias | |
| class Interpolate(nn.Module): | |
| """Interpolation module.""" | |
| def __init__(self, size, mode='bilinear', align_corners=False): | |
| """Init. | |
| Args: | |
| scale_factor (float): scaling | |
| mode (str): interpolation mode | |
| """ | |
| super(Interpolate, self).__init__() | |
| self.interp = nn.functional.interpolate | |
| self.size = size | |
| self.mode = mode | |
| self.align_corners = align_corners | |
| def forward(self, x): | |
| """Forward pass. | |
| Args: | |
| x (tensor): input | |
| Returns: | |
| tensor: interpolated data | |
| """ | |
| x = self.interp( | |
| x, | |
| size=self.size, | |
| mode=self.mode, | |
| align_corners=self.align_corners, | |
| ) | |
| return x | |