Spaces:
Running
Running
File size: 7,926 Bytes
a2b2adc ed5fc05 a2b2adc 334508f a2b2adc ed5fc05 a2b2adc 334508f 7ae0aef a2b2adc 334508f a2b2adc 7ae0aef a2b2adc 7ae0aef a2b2adc 8e12b3e a2b2adc 334508f a2b2adc 334508f a2b2adc 7ae0aef a2b2adc 0c12a2b a2b2adc 334508f a2b2adc 334508f a2b2adc d1a334d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
from __future__ import annotations
import json
import uuid
from datetime import datetime
from pathlib import Path
from typing import List, Dict, Any
import gradio as gr
from huggingface_hub import CommitScheduler, snapshot_download
# ------------------------------
# Config
# ------------------------------
DATASET_REPO_ID = "hugging-science/dataset-quest-index"
COMMIT_EVERY_MIN = 2
LOCAL_SUBMISSIONS_DIR = Path("submissions")
LOCAL_SUBMISSIONS_DIR.mkdir(parents=True, exist_ok=True)
LOCAL_FILE = LOCAL_SUBMISSIONS_DIR / f"records_{uuid.uuid4().hex}.jsonl"
scheduler = CommitScheduler(
repo_id=DATASET_REPO_ID,
repo_type="dataset",
folder_path=LOCAL_SUBMISSIONS_DIR,
path_in_repo="data",
every=COMMIT_EVERY_MIN,
)
# ------------------------------
# Utilities
# ------------------------------
def _now_iso() -> str:
return datetime.utcnow().replace(microsecond=0).isoformat() + "Z"
def read_all_records() -> List[Dict[str, Any]]:
records: List[Dict[str, Any]] = []
local_files = sorted(LOCAL_SUBMISSIONS_DIR.glob("*.jsonl"))
sources = list(local_files)
if not sources:
try:
snap_dir = Path(snapshot_download(
repo_id=DATASET_REPO_ID,
repo_type="dataset",
allow_patterns="data/*.jsonl"
))
hub_data_dir = snap_dir / "data"
sources = sorted(hub_data_dir.glob("*.jsonl"))
except Exception:
# If snapshot fails (e.g., offline), we just return empty
sources = []
for p in sources:
try:
with p.open("r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if not line:
continue
try:
records.append(json.loads(line))
except Exception:
pass
except FileNotFoundError:
pass
return records
def append_record(record: Dict[str, Any]) -> None:
LOCAL_FILE.parent.mkdir(parents=True, exist_ok=True)
with LOCAL_FILE.open("a", encoding="utf-8") as f:
f.write(json.dumps(record, ensure_ascii=False) + "\n")
def filter_records(records: List[Dict[str, Any]], field: str | None, search: str | None) -> List[Dict[str, Any]]:
def match(rec: Dict[str, Any]) -> bool:
ok = True
if field and field != "All":
ok = ok and (rec.get("field") == field)
if search:
s = search.lower()
hay = " ".join(
str(rec.get(k, "")) for k in ["dataset_name", "dataset_url", "description", "user", "field"]
).lower()
ok = ok and (s in hay)
return ok
return [r for r in records if match(r)]
# ------------------------------
# App logic
# ------------------------------
SIZE_UNITS = ["KB", "MB", "GB", "TB"]
def submit_entry(
dataset_name: str,
dataset_url: str,
description: str,
size_value: float,
size_unit: str,
field: str,
profile: gr.OAuthProfile | None,
):
errors = []
if not dataset_name.strip():
errors.append("Dataset name is required.")
if not dataset_url.strip() or not dataset_url.startswith(("http://", "https://", "https://huggingface.co/")):
errors.append("Dataset URL must be an http(s) link.")
if size_value is None or size_value < 0:
errors.append("Approximate size must be a non-negative number.")
if not field.strip():
errors.append("Please provide a field.")
# Check for existing dataset URL and name
existing_records = read_all_records()
for record in existing_records:
if record.get("dataset_url", "").strip().lower() == dataset_url.strip().lower():
errors.append(f"Dataset URL already exists: {record.get('dataset_url')}")
if record.get("dataset_name", "").strip().lower() == dataset_name.strip().lower():
errors.append(f"Dataset name already exists: {record.get('dataset_name')}")
if errors:
return gr.update(value=f"Submission failed:\n- " + "\n- ".join(errors), visible=True), gr.update(visible=False)
user_display = profile.name if profile else "anonymous"
user_handle = getattr(profile, "preferred_username", None) if profile else None
record = {
"id": uuid.uuid4().hex,
"created_at": _now_iso(),
"dataset_name": dataset_name.strip(),
"dataset_url": dataset_url.strip(),
"description": description.strip(),
"approx_size": float(size_value),
"size_unit": size_unit,
"field": field.strip(),
"user": user_handle or user_display,
}
append_record(record)
ok = f"Thanks, {user_display}. Your entry has been saved locally and will sync to the Hub within ~{COMMIT_EVERY_MIN} minutes."
updated = read_all_records()
rows = [
[r["dataset_name"], f'<a href="{r["dataset_url"]}" target="_blank">{r["dataset_url"]}</a>', r["description"], f"{r['approx_size']} {r['size_unit']}", r["field"], r["user"], r["created_at"]]
for r in updated
]
return gr.update(value=ok, visible=True), rows
def refresh_table(field: str, search: str):
data = read_all_records()
data = filter_records(data, field, search)
rows = [
[r["dataset_name"], f'<a href="{r["dataset_url"]}" target="_blank">{r["dataset_url"]}</a>', r["description"], f"{r['approx_size']} {r['size_unit']}", r["field"], r["user"], r["created_at"]]
for r in data
]
return rows
# ------------------------------
# UI
# ------------------------------
with gr.Blocks(title="Community Dataset Index", css=".wrap {margin: 0 auto}", fill_width=True) as demo:
gr.Markdown("# Community Dataset Index\nContribute datasets with a short description. Sign in to record your HF username.")
gr.LoginButton()
with gr.Row(elem_classes=["wrap"]):
with gr.Column(scale=1):
gr.Markdown("### Submit a dataset")
name = gr.Textbox(label="Dataset name", placeholder="e.g. The Pile")
url = gr.Textbox(label="Dataset URL (HF, website or paper)", placeholder="https://huggingface.co/datasets/... or https://...")
desc = gr.Textbox(label="Short description", lines=4)
with gr.Row():
size_val = gr.Number(label="Approx. size", minimum=0, value=0)
size_unit = gr.Dropdown(SIZE_UNITS, value="GB", label="Unit")
field = gr.Textbox(label="Field (e.g. PDEs, multi-omics, single-cell, catalysts, etc.)")
submit = gr.Button("Submit", variant="primary")
notice = gr.Markdown(visible=False)
with gr.Column(scale=2):
gr.Markdown("### Browse & filter")
with gr.Row():
field_filter = gr.Textbox(label="Field filter (leave blank for all)")
search = gr.Textbox(label="Search", placeholder="Search name, URL, description, user…")
refresh = gr.Button("Refresh")
table = gr.Dataframe(
headers=["Name", "URL", "Description", "Size", "Field", "User", "Created"],
datatype=["str", "html", "str", "str", "str", "str", "str"],
interactive=False,
wrap=True,
show_fullscreen_button=True,
)
submit.click(
submit_entry,
inputs=[name, url, desc, size_val, size_unit, field],
outputs=[notice, table],
show_progress="minimal",
)
refresh.click(refresh_table, inputs=[field_filter, search], outputs=table)
field_filter.change(refresh_table, inputs=[field_filter, search], outputs=table)
search.submit(refresh_table, inputs=[field_filter, search], outputs=table)
demo.load(lambda: refresh_table("", ""), inputs=None, outputs=table)
if __name__ == "__main__":
demo.launch(ssr_mode=False)
|