File size: 15,237 Bytes
427fd9c
0ade04a
 
 
4a6a364
c2be249
2f6c8f7
4ed9de7
0a04e5a
e72bc1b
c926c74
4a6a364
0a04e5a
 
c926c74
0a04e5a
c2be249
4a6a364
0a04e5a
 
4a6a364
 
0a04e5a
 
 
 
 
 
 
4a6a364
0a04e5a
 
4a6a364
 
 
 
 
 
 
0a04e5a
 
 
 
 
e72bc1b
4ed9de7
0a04e5a
4ed9de7
0a04e5a
 
4a6a364
0a04e5a
4a6a364
4ed9de7
 
0a04e5a
 
4ed9de7
0a04e5a
4ed9de7
e72bc1b
c2be249
 
e72bc1b
 
 
 
 
 
2f6c8f7
 
e72bc1b
0a04e5a
 
2f6c8f7
0a04e5a
e72bc1b
2f6c8f7
 
 
 
0a04e5a
2f6c8f7
 
 
0a04e5a
2f6c8f7
0a04e5a
2f6c8f7
0a04e5a
4a6a364
4ed9de7
2f6c8f7
 
4a6a364
2f6c8f7
 
 
 
 
 
4ed9de7
4a6a364
2f6c8f7
4a6a364
4ed9de7
2f6c8f7
 
 
 
4ed9de7
2f6c8f7
e72bc1b
 
 
 
0a04e5a
0ade04a
 
e72bc1b
72ea7e1
0ade04a
72ea7e1
 
 
3494b39
72ea7e1
 
 
b786476
0ade04a
4ed9de7
 
 
0ade04a
 
72ea7e1
0ade04a
c2be249
e72bc1b
c2be249
 
 
 
 
 
 
4ed9de7
 
e72bc1b
0ade04a
4ed9de7
 
0ade04a
 
e72bc1b
4ed9de7
 
 
 
e72bc1b
0ade04a
 
 
c2be249
0a04e5a
0ade04a
 
 
 
 
3494b39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a04e5a
0ade04a
3494b39
 
0ade04a
3494b39
 
0ade04a
3494b39
0ade04a
4ed9de7
0ade04a
 
 
 
 
 
 
72ea7e1
0a04e5a
 
4a6a364
 
0a04e5a
 
 
3494b39
c2be249
0a04e5a
3494b39
 
 
 
 
0ade04a
3494b39
 
0ade04a
3494b39
 
0ade04a
3494b39
0ade04a
 
 
 
 
 
 
72ea7e1
0a04e5a
 
4a6a364
 
0a04e5a
 
 
3494b39
0ade04a
0a04e5a
3494b39
 
4a6a364
 
 
 
c2be249
0a04e5a
e6d00b8
 
 
 
 
 
0ade04a
e6d00b8
 
 
 
 
 
 
 
 
e72bc1b
e6d00b8
 
0a04e5a
0fc2a04
e72bc1b
0a04e5a
e72bc1b
 
 
3494b39
 
 
0ade04a
4ed9de7
 
0ade04a
c926c74
0ade04a
 
e72bc1b
3494b39
 
0fc2a04
0a04e5a
e72bc1b
 
 
4ed9de7
0ade04a
4ed9de7
 
0ade04a
4ed9de7
 
0ade04a
4ed9de7
3494b39
c926c74
e72bc1b
 
0ade04a
3494b39
4a6a364
0a04e5a
 
 
 
 
 
 
4a6a364
3494b39
0ade04a
 
e72bc1b
 
0ade04a
 
0a04e5a
e72bc1b
b786476
0a04e5a
0ade04a
 
 
4ed9de7
 
 
0ade04a
4ed9de7
 
3494b39
0ade04a
 
 
 
3494b39
4a6a364
0a04e5a
 
 
 
 
 
 
4a6a364
3494b39
0ade04a
 
 
 
 
 
0a04e5a
0ade04a
0fc2a04
0ade04a
3494b39
427fd9c
 
4a6a364
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import os
import tempfile
import numpy as np
import gradio as gr
from ase.io import read, write
from ase.io.trajectory import Trajectory
import hashlib

# ==== Usar componente nativo Molecule3D ====
try:
    from gradio_molecule3d import Molecule3D
    HAVE_MOL3D = True
    print("✅ gradio_molecule3d loaded successfully")
except Exception as e:
    HAVE_MOL3D = False
    print(f"❌ gradio_molecule3d not available: {e}")

# ==== Función para convertir trayectoria a archivo temporal PDB ====
def traj_to_molecule3d_file(traj_path):
    """
    Convierte una trayectoria ASE (.traj) a un archivo PDB temporal para Molecule3D.
    Retorna el path del archivo temporal (.pdb).
    """
    if not traj_path or not os.path.exists(traj_path):
        return None
    try:
        traj = Trajectory(traj_path)
        if len(traj) == 0:
            return None

        # Usar último frame para visualización estática
        atoms = traj[-1]

        # Crear archivo PDB temporal (formato aceptado por Molecule3D)
        with tempfile.NamedTemporaryFile(suffix=".pdb", delete=False) as f:
            pdb_path = f.name
        write(pdb_path, atoms)  # extensión .pdb selecciona el formato automáticamente
        return pdb_path

    except Exception as e:
        print(f"Error converting trajectory: {e}")
        return None

# ==== Fallback HTML con 3Dmol.js (por si acaso) ====
def traj_to_html(traj_path, width=520, height=520, interval_ms=200):
    """
    Fallback HTML viewer (solo si Molecule3D no está disponible).
    """
    if not traj_path or not os.path.exists(traj_path):
        return "<div style='color:#b00; padding:20px;'>No trajectory file found</div>"

    viewer_id = f"viewer_{abs(hash(traj_path)) % 10000}"

    try:
        traj = Trajectory(traj_path)
        if len(traj) == 0:
            return "<div style='color:#555; padding:20px;'>Empty trajectory</div>"
    except Exception as e:
        return f"<div style='color:#b00; padding:20px;'>Error: {e}</div>"

    xyz_frames = []
    for atoms in traj:
        symbols = atoms.get_chemical_symbols()
        coords = atoms.get_positions()
        parts = [str(len(symbols)), "frame"]
        for s, (x, y, z) in zip(symbols, coords):
            parts.append(f"{s} {x:.6f} {y:.6f} {z:.6f}")
        xyz_frames.append("\n".join(parts))

    frames_json = str(xyz_frames).replace("'", '"')

    html = f"""
<div style="margin-bottom:10px; padding:10px; background:#f5f5f5; border-radius:5px;">
    <strong>🧬 3D Molecular Viewer</strong> - {len(xyz_frames)} frames
</div>
<div id="{viewer_id}" style="width:{width}px; height:{height}px; position:relative; border:2px solid #ddd; border-radius:8px; background:#fafafa;"></div>
<script>
if (typeof window.$3Dmol === 'undefined') {{
    var script = document.createElement('script');
    script.src = 'https://3dmol.org/build/3Dmol-min.js';
    script.onload = function() {{
        setTimeout(function() {{ initViewer_{viewer_id}(); }}, 100);
    }};
    document.head.appendChild(script);
}} else {{
    initViewer_{viewer_id}();
}}
function initViewer_{viewer_id}() {{
    var el = document.getElementById("{viewer_id}");
    if (!el || typeof $3Dmol === "undefined") return;

    var viewer = $3Dmol.createViewer(el, {{backgroundColor: 'white'}});
    var frames = {frames_json};
    var currentFrame = 0;

    function showFrame(frameIndex) {{
        viewer.clear();
        viewer.addModel(frames[frameIndex], "xyz");
        viewer.setStyle({{}}, {{stick: {{radius: 0.1}}, sphere: {{radius: 0.3}}}});
        viewer.zoomTo();
        viewer.render();
    }}

    showFrame(0);

    if (frames.length > 1) {{
        setInterval(function() {{
            currentFrame = (currentFrame + 1) % frames.length;
            showFrame(currentFrame);
        }}, {interval_ms});
    }}
}}
</script>
"""
    return html

# ==== OrbMol SPE directo (sin cambios) ====
from orb_models.forcefield import pretrained
from orb_models.forcefield.calculator import ORBCalculator

_MODEL_CALC = None
def _load_orbmol_calc():
    global _MODEL_CALC
    if _MODEL_CALC is None:
        orbff = pretrained.orb_v3_conservative_inf_omat(
            device="cpu", precision="float32-high"
        )
        _MODEL_CALC = ORBCalculator(orbff, device="cpu")
    return _MODEL_CALC

def predict_molecule(xyz_content, charge=0, spin_multiplicity=1):
    """
    Single Point Energy + fuerzas. No escribe nada salvo un .xyz temporal.
    """
    try:
        calc = _load_orbmol_calc()
        if not xyz_content or not xyz_content.strip():
            return "Error: Please enter XYZ coordinates", "Error"

        with tempfile.NamedTemporaryFile(mode="w", suffix=".xyz", delete=False) as f:
            f.write(xyz_content)
            xyz_file = f.name

        atoms = read(xyz_file)
        atoms.info = {"charge": int(charge), "spin": int(spin_multiplicity)}
        atoms.calc = calc

        energy = atoms.get_potential_energy()  # eV
        forces = atoms.get_forces()            # eV/Å

        lines = [f"Total Energy: {energy:.6f} eV", "", "Atomic Forces:"]
        for i, fc in enumerate(forces):
            lines.append(f"Atom {i+1}: [{fc[0]:.4f}, {fc[1]:.4f}, {fc[2]:.4f}] eV/Å")
        max_force = float(np.max(np.linalg.norm(forces, axis=1)))
        lines += ["", f"Max Force: {max_force:.4f} eV/Å"]

        try:
            os.unlink(xyz_file)
        except Exception:
            pass

        return "\n".join(lines), "Calculation completed with OrbMol"
    except Exception as e:
        return f"Error during calculation: {e}", "Error"

# ==== Simulaciones (sin cambios) ====
from simulation_scripts_orbmol import (
    run_md_simulation,
    run_relaxation_simulation,
)

def _string_looks_like_xyz(text: str) -> bool:
    try:
        first = (text or "").strip().splitlines()[0]
        int(first.split()[0])
        return True
    except Exception:
        return False

def _to_file_if_xyz(input_or_path: str):
    if isinstance(input_or_path, str) and _string_looks_like_xyz(input_or_path):
        tf = tempfile.NamedTemporaryFile(mode="w", suffix=".xyz", delete=False)
        tf.write(input_or_path)
        tf.flush(); tf.close()
        return tf.name, True
    return input_or_path, False

# Wrappers actualizados para devolver archivos para Molecule3D
def md_wrapper(xyz_content, charge, spin, steps, tempK, timestep_fs, ensemble):
    tmp_created = False
    path_or_str = xyz_content
    try:
        path_or_str, tmp_created = _to_file_if_xyz(xyz_content)

        traj_path, log_text, script_text, explanation = run_md_simulation(
            path_or_str,
            int(steps),
            20,                          # pre-relax fija
            float(timestep_fs),
            float(tempK),
            "NVT" if ensemble == "NVT" else "NVE",
            int(charge),
            int(spin),
        )
        status = f"MD completed: {int(steps)} steps at {int(tempK)} K ({ensemble})"

        # Usar Molecule3D si está disponible, sino HTML
        if HAVE_MOL3D:
            pdb_file = traj_to_molecule3d_file(traj_path)
            return (status, traj_path, log_text, script_text, explanation, pdb_file, "")
        else:
            html_value = traj_to_html(traj_path)
            return (status, traj_path, log_text, script_text, explanation, None, html_value)

    except Exception as e:
        return (f"Error: {e}", None, "", "", "", None, "")
    finally:
        if tmp_created and isinstance(path_or_str, str) and os.path.exists(path_or_str):
            try: os.remove(path_or_str)
            except Exception: pass

def relax_wrapper(xyz_content, steps, fmax, charge, spin, relax_cell):
    tmp_created = False
    path_or_str = xyz_content
    try:
        path_or_str, tmp_created = _to_file_if_xyz(xyz_content)

        traj_path, log_text, script_text, explanation = run_relaxation_simulation(
            path_or_str,
            int(steps),
            float(fmax),
            int(charge),
            int(spin),
            bool(relax_cell),
        )
        status = f"Relaxation finished (≤ {int(steps)} steps, fmax={float(fmax)} eV/Å)"

        # Usar Molecule3D si está disponible, sino HTML
        if HAVE_MOL3D:
            pdb_file = traj_to_molecule3d_file(traj_path)
            return (status, traj_path, log_text, script_text, explanation, pdb_file, "")
        else:
            html_value = traj_to_html(traj_path)
            return (status, traj_path, log_text, script_text, explanation, None, html_value)

    except Exception as e:
        return (f"Error: {e}", None, "", "", "", None, "")
    finally:
        if tmp_created and isinstance(path_or_str, str) and os.path.exists(path_or_str):
            try:
                os.remove(path_or_str)
            except Exception:
                pass

# ==== Ejemplos (sin cambios) ====
examples = [
    ["""2
Hydrogen molecule
H 0.0 0.0 0.0
H 0.0 0.0 0.74""", 0, 1],
    ["""3
Water molecule
O 0.0000 0.0000 0.0000
H 0.7571 0.0000 0.5864
H -0.7571 0.0000 0.5864""", 0, 1],
    ["""5
Methane
C 0.0000 0.0000 0.0000
H 1.0890 0.0000 0.0000
H -0.3630 1.0267 0.0000
H -0.3630 -0.5133 0.8887
H -0.3630 -0.5133 -0.8887""", 0, 1],
]

# ==== UI actualizada ====
with gr.Blocks(theme=gr.themes.Ocean(), title="OrbMol Demo") as demo:
    with gr.Tabs():
        # -------- SPE (sin cambios) --------
        with gr.Tab("Single Point Energy"):
            with gr.Row():
                with gr.Column(scale=2):
                    gr.Markdown("# OrbMol — Quantum-Accurate Molecular Predictions")
                    gr.Markdown("Energías y fuerzas con **charge** y **spin multiplicity**.")
                    xyz_input = gr.Textbox(label="XYZ Coordinates", lines=12, placeholder="Paste XYZ here…")
                    with gr.Row():
                        charge_input = gr.Slider(minimum=-10, maximum=10, value=0, step=1, label="Charge")
                        spin_input = gr.Slider(minimum=1, maximum=11, value=1, step=1, label="Spin Multiplicity")
                    run_spe = gr.Button("Run OrbMol Prediction", variant="primary")
                with gr.Column(variant="panel", min_width=500):
                    spe_out = gr.Textbox(label="Energy & Forces", lines=15, interactive=False)
                    spe_status = gr.Textbox(label="Status", interactive=False, max_lines=1)

            gr.Examples(examples=examples, inputs=[xyz_input, charge_input, spin_input])
            run_spe.click(predict_molecule, [xyz_input, charge_input, spin_input], [spe_out, spe_status])

        # -------- MD (actualizada con Molecule3D) --------
        with gr.Tab("Molecular Dynamics"):
            with gr.Row():
                with gr.Column(scale=2):
                    xyz_md = gr.Textbox(label="XYZ Coordinates or path (.xyz/.traj/.pdb/.cif)", lines=12, placeholder="Paste XYZ or path here…")
                    with gr.Row():
                        charge_md = gr.Slider(minimum=-10, maximum=10, value=0, step=1, label="Charge")
                        spin_md = gr.Slider(minimum=1, maximum=11, value=1, step=1, label="Spin Multiplicity")
                    with gr.Row():
                        steps_md = gr.Slider(minimum=10, maximum=2000, value=100, step=10, label="Steps")
                        temp_md = gr.Slider(minimum=10, maximum=1500, value=300, step=10, label="Temperature (K)")
                    with gr.Row():
                        timestep_md = gr.Slider(minimum=0.1, maximum=5.0, value=1.0, step=0.1, label="Timestep (fs)")
                        ensemble_md = gr.Radio(["NVE", "NVT"], value="NVE", label="Ensemble")
                    run_md_btn = gr.Button("Run MD Simulation", variant="primary")

                with gr.Column(variant="panel", min_width=520):
                    md_status = gr.Textbox(label="MD Status", interactive=False)
                    md_traj = gr.File(label="Trajectory (.traj)", interactive=False)

                    # Usar Molecule3D si está disponible
                    if HAVE_MOL3D:
                        md_viewer = Molecule3D(label="3D Molecular Viewer")
                        md_html = gr.HTML(visible=False)  # Oculto cuando usamos Molecule3D
                    else:
                        md_viewer = gr.HTML(visible=False)  # Placeholder
                        md_html = gr.HTML(label="Trajectory Viewer")

                    md_log = gr.Textbox(label="Log", interactive=False, lines=15, max_lines=25)
                    md_script = gr.Code(label="Reproduction Script", language="python", interactive=False, lines=20, max_lines=30)
                    md_explain = gr.Markdown()

            run_md_btn.click(
                md_wrapper,
                inputs=[xyz_md, charge_md, spin_md, steps_md, temp_md, timestep_md, ensemble_md],
                outputs=[md_status, md_traj, md_log, md_script, md_explain, md_viewer, md_html],
            )

        # -------- Relax (actualizada con Molecule3D) --------
        with gr.Tab("Relaxation / Optimization"):
            with gr.Row():
                with gr.Column(scale=2):
                    xyz_rlx = gr.Textbox(label="XYZ Coordinates or path (.xyz/.traj/.pdb/.cif)", lines=12, placeholder="Paste XYZ or path here…")
                    steps_rlx = gr.Slider(minimum=1, maximum=2000, value=300, step=1, label="Max Steps")
                    fmax_rlx = gr.Slider(minimum=0.001, maximum=0.5, value=0.05, step=0.001, label="Fmax (eV/Å)")
                    with gr.Row():
                        charge_rlx = gr.Slider(minimum=-10, maximum=10, value=0, step=1, label="Charge")
                        spin_rlx = gr.Slider(minimum=1, maximum=11, value=1, step=1, label="Spin")
                    relax_cell = gr.Checkbox(False, label="Relax Unit Cell")
                    run_rlx_btn = gr.Button("Run Optimization", variant="primary")

                with gr.Column(variant="panel", min_width=520):
                    rlx_status = gr.Textbox(label="Status", interactive=False)
                    rlx_traj = gr.File(label="Trajectory (.traj)", interactive=False)

                    # Usar Molecule3D si está disponible
                    if HAVE_MOL3D:
                        rlx_viewer = Molecule3D(label="Final Structure")
                        rlx_html = gr.HTML(visible=False)  # Oculto cuando usamos Molecule3D
                    else:
                        rlx_viewer = gr.HTML(visible=False)  # Placeholder
                        rlx_html = gr.HTML(label="Final Structure")

                    rlx_log = gr.Textbox(label="Log", interactive=False, lines=15, max_lines=25)
                    rlx_script = gr.Code(label="Reproduction Script", language="python", interactive=False, lines=20, max_lines=30)
                    rlx_explain = gr.Markdown()

            run_rlx_btn.click(
                relax_wrapper,
                inputs=[xyz_rlx, steps_rlx, fmax_rlx, charge_rlx, spin_rlx, relax_cell],
                outputs=[rlx_status, rlx_traj, rlx_log, rlx_script, rlx_explain, rlx_viewer, rlx_html],
            )

print("Starting OrbMol model loading…")
_ = _load_orbmol_calc()

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True)