Spaces:
Running
Running
File size: 16,939 Bytes
e23f83d d4c1ad6 e23f83d 3cf0050 6d4df16 1b94f8b 48c538b 1b94f8b 48c538b 1b94f8b 48c538b 1b94f8b 48c538b 1b94f8b 48c538b 1b94f8b 48c538b 6d4df16 38d2ff0 6d4df16 38d2ff0 6d4df16 38d2ff0 6d4df16 38d2ff0 6d4df16 38d2ff0 6d4df16 38d2ff0 6d4df16 38d2ff0 6d4df16 48c538b 6d4df16 0ade04a 94990ac 820c44b 38d2ff0 6d4df16 1fedfc5 d6059b9 38d2ff0 d6059b9 38d2ff0 6d4df16 820c44b 6d4df16 1b94f8b 6d4df16 c2be249 fd2ecc8 6d4df16 1b94f8b 4ed9de7 73fc96d 6d4df16 38d2ff0 6d4df16 38d2ff0 6d4df16 0ade04a 48c538b 38d2ff0 c2be249 6d4df16 48c538b 3494b39 820c44b 38d2ff0 6d4df16 0ade04a 1b94f8b 0ade04a 1b94f8b 0ade04a 94990ac 1fedfc5 0ade04a 02d3f79 6d4df16 38d2ff0 6d4df16 38d2ff0 6d4df16 c2be249 48c538b 38d2ff0 3f17e4b 48c538b 3f17e4b 38d2ff0 6d4df16 3f17e4b 1b94f8b 3f17e4b 94990ac 3f17e4b 02d3f79 6d4df16 38d2ff0 6d4df16 38d2ff0 6d4df16 3f17e4b 48c538b 38d2ff0 2fe706b d4c1ad6 ea0059e d4c1ad6 ea0059e d4c1ad6 ea0059e d4c1ad6 ea0059e d4c1ad6 ea0059e d4c1ad6 ea0059e d4c1ad6 0fc2a04 6d4df16 d4c1ad6 3f17e4b d4c1ad6 6d4df16 d4c1ad6 2fe706b d4c1ad6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import os
os.environ["TORCH_DYNAMO_DISABLE"] = "1"
import subprocess
import sys
from pathlib import Path
import tempfile
import numpy as np
import gradio as gr
from ase.io import read, write
from ase.io.trajectory import Trajectory
from simulation_scripts_orbmol import load_orbmol_model, run_md_simulation, run_relaxation_simulation
import hashlib
# ==== Configuración Molecule3D ====
DEFAULT_MOLECULAR_REPRESENTATIONS = [
{
"model": 0,
"chain": "",
"resname": "",
"style": "sphere",
"color": "Jmol",
"around": 0,
"byres": False,
"scale": 0.3,
},
{
"model": 0,
"chain": "",
"resname": "",
"style": "stick",
"color": "Jmol",
"around": 0,
"byres": False,
"scale": 0.2,
},
]
DEFAULT_MOLECULAR_SETTINGS = {
"backgroundColor": "white",
"orthographic": False,
"disableFog": False,
}
# ==== Conversión a PDB para Molecule3D ====
def convert_to_pdb_for_viewer(file_path):
"""Convierte cualquier archivo a PDB para Molecule3D"""
if not file_path or not os.path.exists(file_path):
return None
try:
atoms = read(file_path)
cache_dir = os.path.join(tempfile.gettempdir(), "gradio")
os.makedirs(cache_dir, exist_ok=True)
pdb_path = os.path.join(cache_dir, f"mol_{hashlib.md5(file_path.encode()).hexdigest()[:12]}.pdb")
write(pdb_path, atoms, format="proteindatabank")
return pdb_path
except Exception as e:
print(f"Error converting to PDB: {e}")
return None
# ==== OrbMol SPE ====
def predict_molecule(structure_file, task_name, charge=0, spin_multiplicity=1):
"""Single Point Energy + fuerzas (OrbMol)"""
try:
calc = load_orbmol_model(task_name)
if not structure_file:
return "Error: Please upload a structure file", "Error", None
file_path = structure_file
if not os.path.exists(file_path):
return f"Error: File not found: {file_path}", "Error", None
if os.path.getsize(file_path) == 0:
return f"Error: Empty file: {file_path}", "Error", None
atoms = read(file_path)
if task_name in ["OMol", "OMol-Direct"]:
atoms.info = {"charge": int(charge), "spin": int(spin_multiplicity)}
atoms.calc = calc
energy = atoms.get_potential_energy()
forces = atoms.get_forces()
lines = [
f"Model: {task_name}",
f"Total Energy: {energy:.6f} eV",
"",
"Atomic Forces:"
]
for i, fc in enumerate(forces):
lines.append(f"Atom {i+1}: [{fc[0]:.4f}, {fc[1]:.4f}, {fc[2]:.4f}] eV/Å")
max_force = float(np.max(np.linalg.norm(forces, axis=1)))
lines += ["", f"Max Force: {max_force:.4f} eV/Å"]
pdb_file = convert_to_pdb_for_viewer(file_path)
return "\n".join(lines), f"Calculation completed with {task_name}", pdb_file
except Exception as e:
import traceback
traceback.print_exc()
return f"Error during calculation: {e}", "Error", None
# ==== Wrappers MD y Relax ====
def md_wrapper(structure_file, task_name, charge, spin, steps, tempK, timestep_fs, ensemble):
try:
if not structure_file:
return ("Error: Please upload a structure file", None, "", "", "", None)
traj_path, log_text, script_text, explanation = run_md_simulation(
structure_file,
int(steps),
20,
float(timestep_fs),
float(tempK),
"NVT" if ensemble == "NVT" else "NVE",
str(task_name),
int(charge),
int(spin),
)
status = f"MD completed: {int(steps)} steps at {int(tempK)} K ({ensemble})"
pdb_file = convert_to_pdb_for_viewer(traj_path)
return (status, traj_path, log_text, script_text, explanation, pdb_file)
except Exception as e:
import traceback
traceback.print_exc()
return (f"Error: {e}", None, "", "", "", None)
def relax_wrapper(structure_file, task_name, steps, fmax, charge, spin, relax_cell):
try:
if not structure_file:
return ("Error: Please upload a structure file", None, "", "", "", None)
traj_path, log_text, script_text, explanation = run_relaxation_simulation(
structure_file,
int(steps),
float(fmax),
str(task_name),
int(charge),
int(spin),
bool(relax_cell),
)
status = f"Relaxation finished (<={int(steps)} steps, fmax={float(fmax)} eV/Å)"
pdb_file = convert_to_pdb_for_viewer(traj_path)
return (status, traj_path, log_text, script_text, explanation, pdb_file)
except Exception as e:
import traceback
traceback.print_exc()
return (f"Error: {e}", None, "", "", "", None)
# ==== MAIN FUNCTION ====
def main():
with gr.Blocks(theme=gr.themes.Ocean(), title="OrbMol Demo") as demo:
with gr.Tabs():
# -------- HOME --------
with gr.Tab("Home"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## Learn more about OrbMol")
with gr.Accordion("What is OrbMol?", open=False):
gr.Markdown("""
OrbMol is a suite of quantum-accurate machine learning models for molecular predictions. Built on the **Orb-v3 architecture**, OrbMol provides fast and accurate calculations of energies, forces, and molecular properties.
""")
with gr.Accordion("Available Models", open=False):
gr.Markdown("""
**OMol** and **OMol-Direct**
- Training dataset: OMol25 (>100M calculations)
- Level of theory: ωB97M-V/def2-TZVPD
- Applications: biology, organic chemistry, drug discovery
**OMat**
- Training dataset: OMat24 (>100M inorganic calculations)
- Level of theory: PBE/PBE+U
- Applications: materials discovery, photovoltaics, alloys
""")
with gr.Accordion("Supported File Formats", open=False):
gr.Markdown("""
Supported formats: `.xyz`, `.pdb`, `.cif`, `.traj`, `.mol`, `.sdf`
""")
with gr.Accordion("Resources & Support", open=False):
gr.Markdown("""
- [Orb-v3 paper](https://arxiv.org/abs/2504.06231)
- [Orb-Models GitHub](https://github.com/orbital-materials/orb-models)
""")
with gr.Column(scale=2):
gr.Image("logo_color_text.png",
show_share_button=False,
show_download_button=False,
show_label=False,
show_fullscreen_button=False)
gr.Markdown("# OrbMol — Quantum-Accurate Molecular Predictions")
gr.Markdown("""
Welcome to OrbMol! Use the tabs above to access:
1. **Single Point Energy**: Calculate energies and forces
2. **Molecular Dynamics**: Run MD simulations
3. **Relaxation / Optimization**: Optimize structures
Supported formats: `.xyz`, `.pdb`, `.cif`, `.traj`, `.mol`, `.sdf`
""")
# -------- SPE --------
with gr.Tab("Single Point Energy"):
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("# OrbMol — Quantum-Accurate Molecular Predictions")
gr.Markdown("**Supported formats:** .xyz, .pdb, .cif, .traj, .mol, .sdf")
xyz_input = gr.File(
label="Upload Structure File",
file_types=[".xyz", ".pdb", ".cif", ".traj", ".mol", ".sdf"],
file_count="single"
)
task_name_spe = gr.Radio(
["OMol", "OMat", "OMol-Direct"],
value="OMol",
label="Model Type"
)
with gr.Row():
charge_input = gr.Slider(-10, 10, 0, step=1, label="Charge")
spin_input = gr.Slider(1, 11, 1, step=1, label="Spin Multiplicity")
run_spe = gr.Button("Run OrbMol Prediction", variant="primary")
with gr.Column(variant="panel", min_width=500):
spe_out = gr.Textbox(label="Energy & Forces", lines=15, interactive=False)
spe_status = gr.Textbox(label="Status", interactive=False)
spe_viewer = Molecule3D(
label="Input Structure Viewer",
reps=DEFAULT_MOLECULAR_REPRESENTATIONS,
config=DEFAULT_MOLECULAR_SETTINGS
)
task_name_spe.change(
lambda x: (
gr.update(visible=x in ["OMol", "OMol-Direct"]),
gr.update(visible=x in ["OMol", "OMol-Direct"])
),
[task_name_spe],
[charge_input, spin_input]
)
run_spe.click(
predict_molecule,
[xyz_input, task_name_spe, charge_input, spin_input],
[spe_out, spe_status, spe_viewer]
)
# -------- MD --------
with gr.Tab("Molecular Dynamics"):
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("## Molecular Dynamics Simulation")
xyz_md = gr.File(
label="Upload Structure File",
file_types=[".xyz", ".pdb", ".cif", ".traj", ".mol", ".sdf"],
file_count="single"
)
task_name_md = gr.Radio(
["OMol", "OMat", "OMol-Direct"],
value="OMol",
label="Model Type"
)
with gr.Row():
charge_md = gr.Slider(-10, 10, 0, step=1, label="Charge")
spin_md = gr.Slider(1, 11, 1, step=1, label="Spin Multiplicity")
with gr.Row():
steps_md = gr.Slider(10, 2000, 100, step=10, label="Steps")
temp_md = gr.Slider(10, 1500, 300, step=10, label="Temperature (K)")
with gr.Row():
timestep_md = gr.Slider(0.1, 5.0, 1.0, step=0.1, label="Timestep (fs)")
ensemble_md = gr.Radio(["NVE", "NVT"], value="NVE", label="Ensemble")
run_md_btn = gr.Button("Run MD Simulation", variant="primary")
with gr.Column(variant="panel", min_width=520):
md_status = gr.Textbox(label="MD Status", interactive=False)
md_traj = gr.File(label="Trajectory (.traj)", interactive=False)
md_viewer = Molecule3D(
label="MD Result Viewer",
reps=DEFAULT_MOLECULAR_REPRESENTATIONS,
config=DEFAULT_MOLECULAR_SETTINGS
)
md_log = gr.Textbox(label="Log", interactive=False, lines=15)
md_script = gr.Code(label="Reproduction Script", language="python", interactive=False, lines=20)
md_explain = gr.Markdown()
task_name_md.change(
lambda x: (
gr.update(visible=x in ["OMol", "OMol-Direct"]),
gr.update(visible=x in ["OMol", "OMol-Direct"])
),
[task_name_md],
[charge_md, spin_md]
)
run_md_btn.click(
md_wrapper,
[xyz_md, task_name_md, charge_md, spin_md, steps_md, temp_md, timestep_md, ensemble_md],
[md_status, md_traj, md_log, md_script, md_explain, md_viewer]
)
# -------- Relax --------
with gr.Tab("Relaxation / Optimization"):
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("## Structure Relaxation/Optimization")
xyz_rlx = gr.File(
label="Upload Structure File",
file_types=[".xyz", ".pdb", ".cif", ".traj", ".mol", ".sdf"],
file_count="single"
)
task_name_rlx = gr.Radio(
["OMol", "OMat", "OMol-Direct"],
value="OMol",
label="Model Type"
)
with gr.Row():
steps_rlx = gr.Slider(1, 2000, 300, step=1, label="Max Steps")
fmax_rlx = gr.Slider(0.001, 0.5, 0.05, step=0.001, label="Fmax (eV/Å)")
with gr.Row():
charge_rlx = gr.Slider(-10, 10, 0, step=1, label="Charge")
spin_rlx = gr.Slider(1, 11, 1, step=1, label="Spin")
relax_cell = gr.Checkbox(False, label="Relax Unit Cell")
run_rlx_btn = gr.Button("Run Optimization", variant="primary")
with gr.Column(variant="panel", min_width=520):
rlx_status = gr.Textbox(label="Status", interactive=False)
rlx_traj = gr.File(label="Trajectory (.traj)", interactive=False)
rlx_viewer = Molecule3D(
label="Optimized Structure Viewer",
reps=DEFAULT_MOLECULAR_REPRESENTATIONS,
config=DEFAULT_MOLECULAR_SETTINGS
)
rlx_log = gr.Textbox(label="Log", interactive=False, lines=15)
rlx_script = gr.Code(label="Reproduction Script", language="python", interactive=False, lines=20)
rlx_explain = gr.Markdown()
task_name_rlx.change(
lambda x: (
gr.update(visible=x in ["OMol", "OMol-Direct"]),
gr.update(visible=x in ["OMol", "OMol-Direct"])
),
[task_name_rlx],
[charge_rlx, spin_rlx]
)
run_rlx_btn.click(
relax_wrapper,
[xyz_rlx, task_name_rlx, steps_rlx, fmax_rlx, charge_rlx, spin_rlx, relax_cell],
[rlx_status, rlx_traj, rlx_log, rlx_script, rlx_explain, rlx_viewer]
)
demo.queue(default_concurrency_limit=None)
demo.launch(ssr_mode=False)
if __name__ == "__main__":
os.makedirs("/data/custom_inputs/errors", exist_ok=True)
# On load, build and install the gradio_molecule3d fork
subprocess.call(
["gradio", "cc", "install"], cwd=Path(__file__).parent / "gradio_molecule3d/"
)
subprocess.call(
["gradio", "cc", "build"], cwd=Path(__file__).parent / "gradio_molecule3d/"
)
subprocess.call(
[
sys.executable,
"-m",
"pip",
"install",
Path(__file__).parent
/ "gradio_molecule3d/"
/ "dist/gradio_molecule3d-0.0.7-py3-none-any.whl",
],
cwd=Path(__file__).parent.parent,
)
# Load gradio_molecule3d only once it's built and installed
from gradio_molecule3d import Molecule3D
main() |