Spaces:
Running
Running
File size: 20,652 Bytes
e23f83d ed6967d 5dcd4f0 e23f83d 3cf0050 6d4df16 1b94f8b 48c538b 1b94f8b 48c538b 1b94f8b 48c538b 1b94f8b 48c538b 1b94f8b 48c538b 1b94f8b 48c538b 6d4df16 38d2ff0 6d4df16 38d2ff0 6d4df16 38d2ff0 6d4df16 38d2ff0 6d4df16 38d2ff0 6d4df16 38d2ff0 6d4df16 38d2ff0 6d4df16 48c538b 6d4df16 0ade04a 94990ac 820c44b 38d2ff0 6d4df16 1fedfc5 d6059b9 38d2ff0 d6059b9 38d2ff0 6d4df16 820c44b 6d4df16 1b94f8b 6d4df16 c2be249 fd2ecc8 6d4df16 1b94f8b 4ed9de7 73fc96d 6d4df16 38d2ff0 6d4df16 38d2ff0 6d4df16 0ade04a 48c538b 38d2ff0 c2be249 6d4df16 48c538b 3494b39 820c44b 38d2ff0 6d4df16 0ade04a 1b94f8b 0ade04a 1b94f8b 0ade04a 94990ac 1fedfc5 0ade04a 02d3f79 6d4df16 38d2ff0 6d4df16 38d2ff0 6d4df16 c2be249 48c538b 38d2ff0 3f17e4b 48c538b 3f17e4b 38d2ff0 6d4df16 3f17e4b 1b94f8b 3f17e4b 94990ac 3f17e4b 02d3f79 6d4df16 38d2ff0 6d4df16 38d2ff0 6d4df16 3f17e4b 48c538b 38d2ff0 2fe706b 5dcd4f0 da5f575 5dcd4f0 ea0059e 5dcd4f0 d4c1ad6 5dcd4f0 d4c1ad6 5dcd4f0 d4c1ad6 5dcd4f0 d4c1ad6 5dcd4f0 0fc2a04 5dcd4f0 6d4df16 d4c1ad6 5dcd4f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
import os
os.environ["TORCH_DYNAMO_DISABLE"] = "1"
import tempfile
import numpy as np
import gradio as gr
from ase.io import read, write
from ase.io.trajectory import Trajectory
import subprocess, sys
from pathlib import Path
# === BUILD AND INSTALL LOCAL gradio_molecule3d ===
try:
print("🔧 Building and installing local gradio_molecule3d fork...")
base_path = Path(__file__).parent
local_pkg = base_path / "gradio_molecule3d"
# Step 1 — gradio cc install
subprocess.call(["gradio", "cc", "install"], cwd=local_pkg)
# Step 2 — gradio cc build
subprocess.call(["gradio", "cc", "build"], cwd=local_pkg)
# Step 3 — pip install generated wheel
wheel_path = local_pkg / "dist" / "gradio_molecule3d-0.0.7-py3-none-any.whl"
if not wheel_path.exists():
print("Wheel not found, listing dist contents:")
subprocess.call(["ls", "-R", str(local_pkg / "dist")])
subprocess.call(
[
sys.executable,
"-m",
"pip",
"install",
str(wheel_path),
],
cwd=base_path.parent,
)
print("gradio_molecule3d built and installed successfully!")
except Exception as e:
print(f"Error building gradio_molecule3d: {e}")
# === Import only after it's installed ===
from gradio_molecule3d import Molecule3D
from gradio_molecule3d import Molecule3D
from simulation_scripts_orbmol import load_orbmol_model, run_md_simulation, run_relaxation_simulation
import hashlib
# ==== Configuración Molecule3D ====
DEFAULT_MOLECULAR_REPRESENTATIONS = [
{
"model": 0,
"chain": "",
"resname": "",
"style": "sphere",
"color": "Jmol",
"around": 0,
"byres": False,
"scale": 0.3,
},
{
"model": 0,
"chain": "",
"resname": "",
"style": "stick",
"color": "Jmol",
"around": 0,
"byres": False,
"scale": 0.2,
},
]
DEFAULT_MOLECULAR_SETTINGS = {
"backgroundColor": "white",
"orthographic": False,
"disableFog": False,
}
# ==== Conversión a PDB para Molecule3D ====
def convert_to_pdb_for_viewer(file_path):
"""Convierte cualquier archivo a PDB para Molecule3D"""
if not file_path or not os.path.exists(file_path):
return None
try:
atoms = read(file_path)
cache_dir = os.path.join(tempfile.gettempdir(), "gradio")
os.makedirs(cache_dir, exist_ok=True)
pdb_path = os.path.join(cache_dir, f"mol_{hashlib.md5(file_path.encode()).hexdigest()[:12]}.pdb")
write(pdb_path, atoms, format="proteindatabank")
return pdb_path
except Exception as e:
print(f"Error converting to PDB: {e}")
return None
# ==== OrbMol SPE ====
def predict_molecule(structure_file, task_name, charge=0, spin_multiplicity=1):
"""Single Point Energy + fuerzas (OrbMol)"""
try:
calc = load_orbmol_model(task_name)
if not structure_file:
return "Error: Please upload a structure file", "Error", None
file_path = structure_file
if not os.path.exists(file_path):
return f"Error: File not found: {file_path}", "Error", None
if os.path.getsize(file_path) == 0:
return f"Error: Empty file: {file_path}", "Error", None
atoms = read(file_path)
if task_name in ["OMol", "OMol-Direct"]:
atoms.info = {"charge": int(charge), "spin": int(spin_multiplicity)}
atoms.calc = calc
energy = atoms.get_potential_energy()
forces = atoms.get_forces()
lines = [
f"Model: {task_name}",
f"Total Energy: {energy:.6f} eV",
"",
"Atomic Forces:"
]
for i, fc in enumerate(forces):
lines.append(f"Atom {i+1}: [{fc[0]:.4f}, {fc[1]:.4f}, {fc[2]:.4f}] eV/Å")
max_force = float(np.max(np.linalg.norm(forces, axis=1)))
lines += ["", f"Max Force: {max_force:.4f} eV/Å"]
pdb_file = convert_to_pdb_for_viewer(file_path)
return "\n".join(lines), f"Calculation completed with {task_name}", pdb_file
except Exception as e:
import traceback
traceback.print_exc()
return f"Error during calculation: {e}", "Error", None
# ==== Wrappers MD y Relax ====
def md_wrapper(structure_file, task_name, charge, spin, steps, tempK, timestep_fs, ensemble):
try:
if not structure_file:
return ("Error: Please upload a structure file", None, "", "", "", None)
traj_path, log_text, script_text, explanation = run_md_simulation(
structure_file,
int(steps),
20,
float(timestep_fs),
float(tempK),
"NVT" if ensemble == "NVT" else "NVE",
str(task_name),
int(charge),
int(spin),
)
status = f"MD completed: {int(steps)} steps at {int(tempK)} K ({ensemble})"
pdb_file = convert_to_pdb_for_viewer(traj_path)
return (status, traj_path, log_text, script_text, explanation, pdb_file)
except Exception as e:
import traceback
traceback.print_exc()
return (f"Error: {e}", None, "", "", "", None)
def relax_wrapper(structure_file, task_name, steps, fmax, charge, spin, relax_cell):
try:
if not structure_file:
return ("Error: Please upload a structure file", None, "", "", "", None)
traj_path, log_text, script_text, explanation = run_relaxation_simulation(
structure_file,
int(steps),
float(fmax),
str(task_name),
int(charge),
int(spin),
bool(relax_cell),
)
status = f"Relaxation finished (<={int(steps)} steps, fmax={float(fmax)} eV/Å)"
pdb_file = convert_to_pdb_for_viewer(traj_path)
return (status, traj_path, log_text, script_text, explanation, pdb_file)
except Exception as e:
import traceback
traceback.print_exc()
return (f"Error: {e}", None, "", "", "", None)
# ==== UI ====
with gr.Blocks(theme=gr.themes.Ocean(), title="OrbMol Demo") as demo:
with gr.Tabs():
# -------- HOME TAB --------
with gr.Tab("Home"):
with gr.Row():
# Columna izquierda con acordeones
with gr.Column(scale=1):
gr.Markdown("## Learn more about OrbMol")
with gr.Accordion("What is OrbMol?", open=False):
gr.Markdown("""
OrbMol is a suite of quantum-accurate machine learning models for molecular predictions. Built on the **Orb-v3 architecture**, OrbMol provides fast and accurate calculations of energies, forces, and molecular properties at the level of advanced quantum chemistry methods.
The models combine the transferability of universal potentials with quantum-level accuracy, making them suitable for a wide range of applications in chemistry, materials science, and drug discovery.
""")
with gr.Accordion("Available Models", open=False):
gr.Markdown("""
**OMol** and **OMol-Direct**
- **Training dataset**: OMol25 (>100M calculations on small molecules, biomolecules, metal complexes, and electrolytes)
- **Level of theory**: ωB97M-V/def2-TZVPD with non-local dispersion; solvation treated explicitly
- **Inputs**: total charge & spin multiplicity
- **Applications**: biology, organic chemistry, protein folding, small-molecule drugs, organic liquids, homogeneous catalysis
- **Caveats**: trained only on aperiodic systems → periodic/inorganic cases may not work well
- **Difference**: OMol enforces energy–force consistency; OMol-Direct relaxes this for efficiency
**OMat**
- **Training dataset**: OMat24 (>100M inorganic calculations, from Materials Project, Alexandria, and far-from-equilibrium samples)
- **Level of theory**: PBE/PBE+U with Materials Project settings; VASP 54 pseudopotentials; no dispersion
- **Inputs**: No support for spin and charge. Spin polarization included but magnetic state cannot be selected
- **Applications**: inorganic discovery, photovoltaics, alloys, superconductors, electronic/optical materials
- **Caveats**: magnetic effects may be incompletely captured
""")
with gr.Accordion("Supported File Formats", open=False):
gr.Markdown("""
OrbMol supports the following molecular structure formats:
- `.xyz` - XYZ coordinate files
- `.pdb` - Protein Data Bank format
- `.cif` - Crystallographic Information File
- `.traj` - ASE trajectory format
- `.mol` - MDL Molfile
- `.sdf` - Structure Data File
All formats are automatically converted internally for processing.
""")
with gr.Accordion("How to Use", open=False):
gr.Markdown("""
**Single Point Energy**: Upload a molecular structure and select a model to calculate energies and forces.
**Molecular Dynamics**: Run time-dependent simulations to observe molecular behavior at different temperatures and conditions.
**Relaxation/Optimization**: Find the minimum-energy configuration of your molecular structure.
Each tab provides specific parameters you can adjust to customize your calculations.
""")
with gr.Accordion("Technical Foundation", open=False):
gr.Markdown("""
All models are based on the **Orb-v3 architecture**, the latest generation of Orb universal interatomic potentials.
Key features:
- Graph neural network architecture
- Equivariant message passing
- Multi-task learning across different quantum chemistry methods
- Billions of training examples across diverse chemical spaces
- Sub-kcal/mol accuracy on test sets
""")
with gr.Accordion("Resources & Support", open=False):
gr.Markdown("""
- [Orb-v3 paper](https://arxiv.org/abs/2504.06231)
- [Orb-Models GitHub repository](https://github.com/orbital-materials/orb-models)
- For issues/questions, please open a GitHub issue or contact the developers
**Citation**: If you use OrbMol in your research, please cite the Orb-v3 paper and the relevant dataset papers (OMol25/OMat24).
""")
# Columna derecha con contenido principal
with gr.Column(scale=2):
gr.Image("logo_color_text.png",
show_share_button=False,
show_download_button=False,
show_label=False,
show_fullscreen_button=False)
gr.Markdown("# OrbMol — Quantum-Accurate Molecular Predictions")
gr.Markdown("""
Welcome to the OrbMol demo! This interactive platform allows you to explore the capabilities of our quantum-accurate machine learning models for molecular simulations.
## Quick Start
Use the tabs above to access different functionalities:
1. **Single Point Energy**: Calculate energies and forces for a given molecular structure
2. **Molecular Dynamics**: Run MD simulations using OrbMol-trained potentials
3. **Relaxation / Optimization**: Optimize molecular structures to their minimum-energy configurations
Simply upload a molecular structure file in any supported format (`.xyz`, `.pdb`, `.cif`, `.traj`, `.mol`, `.sdf`) and select the appropriate model for your system.
## Model Selection Guide
**Choose OMol/OMol-Direct for:**
- Organic molecules and biomolecules
- Drug-like compounds
- Metal-organic complexes
- Molecules in solution
- Systems where you need to specify charge and spin
**Choose OMat for:**
- Inorganic crystals and materials
- Periodic systems
- Bulk materials and alloys
- Solid-state compounds
Explore the accordions on the left to learn more about each model's capabilities, training data, and limitations.
""")
gr.Markdown("## Try an Example")
gr.Markdown("""
To get started quickly, navigate to any of the calculation tabs above and try one of these examples:
- **Single Point Energy**: Upload a small molecule to see energy and force predictions
- **Molecular Dynamics**: Run a short simulation at 300K to observe thermal motion
- **Relaxation**: Optimize a distorted structure to find its equilibrium geometry
""")
# -------- SPE --------
with gr.Tab("Single Point Energy"):
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("# OrbMol — Quantum-Accurate Molecular Predictions")
gr.Markdown("**Supported formats:** .xyz, .pdb, .cif, .traj, .mol, .sdf")
xyz_input = gr.File(
label="Upload Structure File",
file_types=[".xyz", ".pdb", ".cif", ".traj", ".mol", ".sdf"],
file_count="single"
)
task_name_spe = gr.Radio(
["OMol", "OMat", "OMol-Direct"],
value="OMol",
label="Model Type"
)
with gr.Row():
charge_input = gr.Slider(-10, 10, 0, step=1, label="Charge")
spin_input = gr.Slider(1, 11, 1, step=1, label="Spin Multiplicity")
run_spe = gr.Button("Run OrbMol Prediction", variant="primary")
with gr.Column(variant="panel", min_width=500):
spe_out = gr.Textbox(label="Energy & Forces", lines=15, interactive=False)
spe_status = gr.Textbox(label="Status", interactive=False)
spe_viewer = Molecule3D(
label="Input Structure Viewer",
reps=DEFAULT_MOLECULAR_REPRESENTATIONS,
config=DEFAULT_MOLECULAR_SETTINGS
)
task_name_spe.change(
lambda x: (
gr.update(visible=x in ["OMol", "OMol-Direct"]),
gr.update(visible=x in ["OMol", "OMol-Direct"])
),
[task_name_spe],
[charge_input, spin_input]
)
run_spe.click(
predict_molecule,
[xyz_input, task_name_spe, charge_input, spin_input],
[spe_out, spe_status, spe_viewer]
)
# -------- MD --------
with gr.Tab("Molecular Dynamics"):
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("## Molecular Dynamics Simulation")
xyz_md = gr.File(
label="Upload Structure File",
file_types=[".xyz", ".pdb", ".cif", ".traj", ".mol", ".sdf"],
file_count="single"
)
task_name_md = gr.Radio(
["OMol", "OMat", "OMol-Direct"],
value="OMol",
label="Model Type"
)
with gr.Row():
charge_md = gr.Slider(-10, 10, 0, step=1, label="Charge")
spin_md = gr.Slider(1, 11, 1, step=1, label="Spin Multiplicity")
with gr.Row():
steps_md = gr.Slider(10, 2000, 100, step=10, label="Steps")
temp_md = gr.Slider(10, 1500, 300, step=10, label="Temperature (K)")
with gr.Row():
timestep_md = gr.Slider(0.1, 5.0, 1.0, step=0.1, label="Timestep (fs)")
ensemble_md = gr.Radio(["NVE", "NVT"], value="NVE", label="Ensemble")
run_md_btn = gr.Button("Run MD Simulation", variant="primary")
with gr.Column(variant="panel", min_width=520):
md_status = gr.Textbox(label="MD Status", interactive=False)
md_traj = gr.File(label="Trajectory (.traj)", interactive=False)
md_viewer = Molecule3D(
label="MD Result Viewer",
reps=DEFAULT_MOLECULAR_REPRESENTATIONS,
config=DEFAULT_MOLECULAR_SETTINGS
)
md_log = gr.Textbox(label="Log", interactive=False, lines=15)
md_script = gr.Code(label="Reproduction Script", language="python", interactive=False, lines=20)
md_explain = gr.Markdown()
task_name_md.change(
lambda x: (
gr.update(visible=x in ["OMol", "OMol-Direct"]),
gr.update(visible=x in ["OMol", "OMol-Direct"])
),
[task_name_md],
[charge_md, spin_md]
)
run_md_btn.click(
md_wrapper,
[xyz_md, task_name_md, charge_md, spin_md, steps_md, temp_md, timestep_md, ensemble_md],
[md_status, md_traj, md_log, md_script, md_explain, md_viewer]
)
# -------- Relax --------
with gr.Tab("Relaxation / Optimization"):
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("## Structure Relaxation/Optimization")
xyz_rlx = gr.File(
label="Upload Structure File",
file_types=[".xyz", ".pdb", ".cif", ".traj", ".mol", ".sdf"],
file_count="single"
)
task_name_rlx = gr.Radio(
["OMol", "OMat", "OMol-Direct"],
value="OMol",
label="Model Type"
)
with gr.Row():
steps_rlx = gr.Slider(1, 2000, 300, step=1, label="Max Steps")
fmax_rlx = gr.Slider(0.001, 0.5, 0.05, step=0.001, label="Fmax (eV/Å)")
with gr.Row():
charge_rlx = gr.Slider(-10, 10, 0, step=1, label="Charge")
spin_rlx = gr.Slider(1, 11, 1, step=1, label="Spin")
relax_cell = gr.Checkbox(False, label="Relax Unit Cell")
run_rlx_btn = gr.Button("Run Optimization", variant="primary")
with gr.Column(variant="panel", min_width=520):
rlx_status = gr.Textbox(label="Status", interactive=False)
rlx_traj = gr.File(label="Trajectory (.traj)", interactive=False)
rlx_viewer = Molecule3D(
label="Optimized Structure Viewer",
reps=DEFAULT_MOLECULAR_REPRESENTATIONS,
config=DEFAULT_MOLECULAR_SETTINGS
)
rlx_log = gr.Textbox(label="Log", interactive=False, lines=15)
rlx_script = gr.Code(label="Reproduction Script", language="python", interactive=False, lines=20)
rlx_explain = gr.Markdown()
task_name_rlx.change(
lambda x: (
gr.update(visible=x in ["OMol", "OMol-Direct"]),
gr.update(visible=x in ["OMol", "OMol-Direct"])
),
[task_name_rlx],
[charge_rlx, spin_rlx]
)
run_rlx_btn.click(
relax_wrapper,
[xyz_rlx, task_name_rlx, steps_rlx, fmax_rlx, charge_rlx, spin_rlx, relax_cell],
[rlx_status, rlx_traj, rlx_log, rlx_script, rlx_explain, rlx_viewer]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True) |