File size: 20,652 Bytes
e23f83d
 
 
 
 
 
 
ed6967d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dcd4f0
e23f83d
 
3cf0050
6d4df16
1b94f8b
48c538b
 
 
 
 
1b94f8b
48c538b
 
1b94f8b
48c538b
 
 
 
 
 
1b94f8b
48c538b
 
1b94f8b
 
48c538b
 
1b94f8b
 
 
 
 
48c538b
6d4df16
38d2ff0
6d4df16
38d2ff0
 
6d4df16
38d2ff0
 
6d4df16
38d2ff0
 
6d4df16
38d2ff0
6d4df16
38d2ff0
6d4df16
38d2ff0
 
 
 
 
6d4df16
48c538b
6d4df16
0ade04a
94990ac
820c44b
38d2ff0
6d4df16
1fedfc5
d6059b9
38d2ff0
d6059b9
38d2ff0
6d4df16
820c44b
6d4df16
1b94f8b
 
6d4df16
c2be249
fd2ecc8
 
6d4df16
1b94f8b
 
 
 
 
 
4ed9de7
 
73fc96d
 
6d4df16
38d2ff0
6d4df16
38d2ff0
6d4df16
0ade04a
48c538b
 
38d2ff0
c2be249
6d4df16
48c538b
3494b39
820c44b
38d2ff0
6d4df16
0ade04a
1b94f8b
0ade04a
1b94f8b
0ade04a
 
 
94990ac
1fedfc5
 
0ade04a
02d3f79
6d4df16
38d2ff0
6d4df16
38d2ff0
6d4df16
c2be249
48c538b
 
38d2ff0
3f17e4b
48c538b
3f17e4b
 
38d2ff0
6d4df16
3f17e4b
1b94f8b
3f17e4b
 
94990ac
3f17e4b
 
 
 
02d3f79
6d4df16
38d2ff0
6d4df16
38d2ff0
6d4df16
3f17e4b
48c538b
 
38d2ff0
2fe706b
5dcd4f0
 
 
da5f575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dcd4f0
 
 
 
 
 
ea0059e
5dcd4f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4c1ad6
5dcd4f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4c1ad6
5dcd4f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4c1ad6
5dcd4f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4c1ad6
5dcd4f0
 
 
 
 
 
 
 
 
 
 
 
 
0fc2a04
5dcd4f0
 
 
 
 
 
 
 
 
 
 
 
 
 
6d4df16
d4c1ad6
5dcd4f0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import os
os.environ["TORCH_DYNAMO_DISABLE"] = "1"
import tempfile
import numpy as np
import gradio as gr
from ase.io import read, write
from ase.io.trajectory import Trajectory
import subprocess, sys
from pathlib import Path

# === BUILD AND INSTALL LOCAL gradio_molecule3d ===
try:
    print("🔧 Building and installing local gradio_molecule3d fork...")

    base_path = Path(__file__).parent
    local_pkg = base_path / "gradio_molecule3d"

    # Step 1 — gradio cc install
    subprocess.call(["gradio", "cc", "install"], cwd=local_pkg)

    # Step 2 — gradio cc build
    subprocess.call(["gradio", "cc", "build"], cwd=local_pkg)

    # Step 3 — pip install generated wheel
    wheel_path = local_pkg / "dist" / "gradio_molecule3d-0.0.7-py3-none-any.whl"
    if not wheel_path.exists():
        print("Wheel not found, listing dist contents:")
        subprocess.call(["ls", "-R", str(local_pkg / "dist")])
    subprocess.call(
        [
            sys.executable,
            "-m",
            "pip",
            "install",
            str(wheel_path),
        ],
        cwd=base_path.parent,
    )

    print("gradio_molecule3d built and installed successfully!")

except Exception as e:
    print(f"Error building gradio_molecule3d: {e}")

# === Import only after it's installed ===
from gradio_molecule3d import Molecule3D

from gradio_molecule3d import Molecule3D
from simulation_scripts_orbmol import load_orbmol_model, run_md_simulation, run_relaxation_simulation
import hashlib

# ==== Configuración Molecule3D ====
DEFAULT_MOLECULAR_REPRESENTATIONS = [
    {
        "model": 0,
        "chain": "",
        "resname": "",
        "style": "sphere",
        "color": "Jmol",
        "around": 0,
        "byres": False,
        "scale": 0.3,
    },
    {
        "model": 0,
        "chain": "",
        "resname": "",
        "style": "stick",
        "color": "Jmol",
        "around": 0,
        "byres": False,
        "scale": 0.2,
    },
]

DEFAULT_MOLECULAR_SETTINGS = {
    "backgroundColor": "white",
    "orthographic": False,
    "disableFog": False,
}

# ==== Conversión a PDB para Molecule3D ====
def convert_to_pdb_for_viewer(file_path):
    """Convierte cualquier archivo a PDB para Molecule3D"""
    if not file_path or not os.path.exists(file_path):
        return None
    
    try:
        atoms = read(file_path)
        
        cache_dir = os.path.join(tempfile.gettempdir(), "gradio")
        os.makedirs(cache_dir, exist_ok=True)
        
        pdb_path = os.path.join(cache_dir, f"mol_{hashlib.md5(file_path.encode()).hexdigest()[:12]}.pdb")
        
        write(pdb_path, atoms, format="proteindatabank")
        
        return pdb_path
    except Exception as e:
        print(f"Error converting to PDB: {e}")
        return None

# ==== OrbMol SPE ====
def predict_molecule(structure_file, task_name, charge=0, spin_multiplicity=1):
    """Single Point Energy + fuerzas (OrbMol)"""
    try:
        calc = load_orbmol_model(task_name)
        if not structure_file:
            return "Error: Please upload a structure file", "Error", None

        file_path = structure_file
        if not os.path.exists(file_path):
            return f"Error: File not found: {file_path}", "Error", None
        if os.path.getsize(file_path) == 0:
            return f"Error: Empty file: {file_path}", "Error", None

        atoms = read(file_path)
        
        if task_name in ["OMol", "OMol-Direct"]:
            atoms.info = {"charge": int(charge), "spin": int(spin_multiplicity)}
        
        atoms.calc = calc
        energy = atoms.get_potential_energy()
        forces = atoms.get_forces()

        lines = [
            f"Model: {task_name}",
            f"Total Energy: {energy:.6f} eV",
            "",
            "Atomic Forces:"
        ]
        for i, fc in enumerate(forces):
            lines.append(f"Atom {i+1}: [{fc[0]:.4f}, {fc[1]:.4f}, {fc[2]:.4f}] eV/Å")
        max_force = float(np.max(np.linalg.norm(forces, axis=1)))
        lines += ["", f"Max Force: {max_force:.4f} eV/Å"]

        pdb_file = convert_to_pdb_for_viewer(file_path)
        
        return "\n".join(lines), f"Calculation completed with {task_name}", pdb_file
        
    except Exception as e:
        import traceback
        traceback.print_exc()
        return f"Error during calculation: {e}", "Error", None

# ==== Wrappers MD y Relax ====
def md_wrapper(structure_file, task_name, charge, spin, steps, tempK, timestep_fs, ensemble):
    try:
        if not structure_file:
            return ("Error: Please upload a structure file", None, "", "", "", None)

        traj_path, log_text, script_text, explanation = run_md_simulation(
            structure_file,
            int(steps),
            20,
            float(timestep_fs),
            float(tempK),
            "NVT" if ensemble == "NVT" else "NVE",
            str(task_name),
            int(charge),
            int(spin),
        )
        status = f"MD completed: {int(steps)} steps at {int(tempK)} K ({ensemble})"

        pdb_file = convert_to_pdb_for_viewer(traj_path)
        
        return (status, traj_path, log_text, script_text, explanation, pdb_file)

    except Exception as e:
        import traceback
        traceback.print_exc()
        return (f"Error: {e}", None, "", "", "", None)

def relax_wrapper(structure_file, task_name, steps, fmax, charge, spin, relax_cell):
    try:
        if not structure_file:
            return ("Error: Please upload a structure file", None, "", "", "", None)

        traj_path, log_text, script_text, explanation = run_relaxation_simulation(
            structure_file,
            int(steps),
            float(fmax),
            str(task_name),
            int(charge),
            int(spin),
            bool(relax_cell),
        )
        status = f"Relaxation finished (<={int(steps)} steps, fmax={float(fmax)} eV/Å)"

        pdb_file = convert_to_pdb_for_viewer(traj_path)
        
        return (status, traj_path, log_text, script_text, explanation, pdb_file)

    except Exception as e:
        import traceback
        traceback.print_exc()
        return (f"Error: {e}", None, "", "", "", None)

# ==== UI ====
with gr.Blocks(theme=gr.themes.Ocean(), title="OrbMol Demo") as demo:
    with gr.Tabs():
        # -------- HOME TAB --------
        with gr.Tab("Home"):
            with gr.Row():
                # Columna izquierda con acordeones
                with gr.Column(scale=1):
                    gr.Markdown("## Learn more about OrbMol")
                    
                    with gr.Accordion("What is OrbMol?", open=False):
                        gr.Markdown("""
OrbMol is a suite of quantum-accurate machine learning models for molecular predictions. Built on the **Orb-v3 architecture**, OrbMol provides fast and accurate calculations of energies, forces, and molecular properties at the level of advanced quantum chemistry methods.

The models combine the transferability of universal potentials with quantum-level accuracy, making them suitable for a wide range of applications in chemistry, materials science, and drug discovery.
                        """)
                    
                    with gr.Accordion("Available Models", open=False):
                        gr.Markdown("""
**OMol** and **OMol-Direct**
- **Training dataset**: OMol25 (>100M calculations on small molecules, biomolecules, metal complexes, and electrolytes)
- **Level of theory**: ωB97M-V/def2-TZVPD with non-local dispersion; solvation treated explicitly
- **Inputs**: total charge & spin multiplicity
- **Applications**: biology, organic chemistry, protein folding, small-molecule drugs, organic liquids, homogeneous catalysis
- **Caveats**: trained only on aperiodic systems → periodic/inorganic cases may not work well
- **Difference**: OMol enforces energy–force consistency; OMol-Direct relaxes this for efficiency

**OMat**
- **Training dataset**: OMat24 (>100M inorganic calculations, from Materials Project, Alexandria, and far-from-equilibrium samples)
- **Level of theory**: PBE/PBE+U with Materials Project settings; VASP 54 pseudopotentials; no dispersion
- **Inputs**: No support for spin and charge. Spin polarization included but magnetic state cannot be selected
- **Applications**: inorganic discovery, photovoltaics, alloys, superconductors, electronic/optical materials
- **Caveats**: magnetic effects may be incompletely captured
                        """)
                    
                    with gr.Accordion("Supported File Formats", open=False):
                        gr.Markdown("""
OrbMol supports the following molecular structure formats:
- `.xyz` - XYZ coordinate files
- `.pdb` - Protein Data Bank format
- `.cif` - Crystallographic Information File
- `.traj` - ASE trajectory format
- `.mol` - MDL Molfile
- `.sdf` - Structure Data File

All formats are automatically converted internally for processing.
                        """)
                    
                    with gr.Accordion("How to Use", open=False):
                        gr.Markdown("""
**Single Point Energy**: Upload a molecular structure and select a model to calculate energies and forces.

**Molecular Dynamics**: Run time-dependent simulations to observe molecular behavior at different temperatures and conditions.

**Relaxation/Optimization**: Find the minimum-energy configuration of your molecular structure.

Each tab provides specific parameters you can adjust to customize your calculations.
                        """)
                    
                    with gr.Accordion("Technical Foundation", open=False):
                        gr.Markdown("""
All models are based on the **Orb-v3 architecture**, the latest generation of Orb universal interatomic potentials. 

Key features:
- Graph neural network architecture
- Equivariant message passing
- Multi-task learning across different quantum chemistry methods
- Billions of training examples across diverse chemical spaces
- Sub-kcal/mol accuracy on test sets
                        """)
                    
                    with gr.Accordion("Resources & Support", open=False):
                        gr.Markdown("""
- [Orb-v3 paper](https://arxiv.org/abs/2504.06231)
- [Orb-Models GitHub repository](https://github.com/orbital-materials/orb-models)
- For issues/questions, please open a GitHub issue or contact the developers

**Citation**: If you use OrbMol in your research, please cite the Orb-v3 paper and the relevant dataset papers (OMol25/OMat24).
                        """)
                
                # Columna derecha con contenido principal
                with gr.Column(scale=2):
                    gr.Image("logo_color_text.png",
                             show_share_button=False,
                             show_download_button=False,
                             show_label=False,
                             show_fullscreen_button=False)
                    
                    gr.Markdown("# OrbMol — Quantum-Accurate Molecular Predictions")
                    
                    gr.Markdown("""
Welcome to the OrbMol demo! This interactive platform allows you to explore the capabilities of our quantum-accurate machine learning models for molecular simulations.

## Quick Start

Use the tabs above to access different functionalities:

1. **Single Point Energy**: Calculate energies and forces for a given molecular structure
2. **Molecular Dynamics**: Run MD simulations using OrbMol-trained potentials
3. **Relaxation / Optimization**: Optimize molecular structures to their minimum-energy configurations

Simply upload a molecular structure file in any supported format (`.xyz`, `.pdb`, `.cif`, `.traj`, `.mol`, `.sdf`) and select the appropriate model for your system.

## Model Selection Guide

**Choose OMol/OMol-Direct for:**
- Organic molecules and biomolecules
- Drug-like compounds
- Metal-organic complexes
- Molecules in solution
- Systems where you need to specify charge and spin

**Choose OMat for:**
- Inorganic crystals and materials
- Periodic systems
- Bulk materials and alloys
- Solid-state compounds

Explore the accordions on the left to learn more about each model's capabilities, training data, and limitations.
                    """)
                    
                    gr.Markdown("## Try an Example")
                    gr.Markdown("""
To get started quickly, navigate to any of the calculation tabs above and try one of these examples:
- **Single Point Energy**: Upload a small molecule to see energy and force predictions
- **Molecular Dynamics**: Run a short simulation at 300K to observe thermal motion
- **Relaxation**: Optimize a distorted structure to find its equilibrium geometry
                    """)

        # -------- SPE --------
        with gr.Tab("Single Point Energy"):
            with gr.Row():
                with gr.Column(scale=2):
                    gr.Markdown("# OrbMol — Quantum-Accurate Molecular Predictions")
                    gr.Markdown("**Supported formats:** .xyz, .pdb, .cif, .traj, .mol, .sdf")
                    
                    xyz_input = gr.File(
                        label="Upload Structure File",
                        file_types=[".xyz", ".pdb", ".cif", ".traj", ".mol", ".sdf"],
                        file_count="single"
                    )
                    task_name_spe = gr.Radio(
                        ["OMol", "OMat", "OMol-Direct"],
                        value="OMol",
                        label="Model Type"
                    )
                    with gr.Row():
                        charge_input = gr.Slider(-10, 10, 0, step=1, label="Charge")
                        spin_input = gr.Slider(1, 11, 1, step=1, label="Spin Multiplicity")
                    
                    run_spe = gr.Button("Run OrbMol Prediction", variant="primary")
                    
                with gr.Column(variant="panel", min_width=500):
                    spe_out = gr.Textbox(label="Energy & Forces", lines=15, interactive=False)
                    spe_status = gr.Textbox(label="Status", interactive=False)
                    
                    spe_viewer = Molecule3D(
                        label="Input Structure Viewer",
                        reps=DEFAULT_MOLECULAR_REPRESENTATIONS,
                        config=DEFAULT_MOLECULAR_SETTINGS
                    )
                    
                    task_name_spe.change(
                        lambda x: (
                            gr.update(visible=x in ["OMol", "OMol-Direct"]),
                            gr.update(visible=x in ["OMol", "OMol-Direct"])
                        ),
                        [task_name_spe],
                        [charge_input, spin_input]
                    )
                    
            run_spe.click(
                predict_molecule,
                [xyz_input, task_name_spe, charge_input, spin_input],
                [spe_out, spe_status, spe_viewer]
            )

        # -------- MD --------
        with gr.Tab("Molecular Dynamics"):
            with gr.Row():
                with gr.Column(scale=2):
                    gr.Markdown("## Molecular Dynamics Simulation")
                    
                    xyz_md = gr.File(
                        label="Upload Structure File",
                        file_types=[".xyz", ".pdb", ".cif", ".traj", ".mol", ".sdf"],
                        file_count="single"
                    )
                    task_name_md = gr.Radio(
                        ["OMol", "OMat", "OMol-Direct"],
                        value="OMol",
                        label="Model Type"
                    )
                    with gr.Row():
                        charge_md = gr.Slider(-10, 10, 0, step=1, label="Charge")
                        spin_md = gr.Slider(1, 11, 1, step=1, label="Spin Multiplicity")
                    with gr.Row():
                        steps_md = gr.Slider(10, 2000, 100, step=10, label="Steps")
                        temp_md = gr.Slider(10, 1500, 300, step=10, label="Temperature (K)")
                    with gr.Row():
                        timestep_md = gr.Slider(0.1, 5.0, 1.0, step=0.1, label="Timestep (fs)")
                        ensemble_md = gr.Radio(["NVE", "NVT"], value="NVE", label="Ensemble")
                    run_md_btn = gr.Button("Run MD Simulation", variant="primary")

                with gr.Column(variant="panel", min_width=520):
                    md_status = gr.Textbox(label="MD Status", interactive=False)
                    md_traj = gr.File(label="Trajectory (.traj)", interactive=False)
                    
                    md_viewer = Molecule3D(
                        label="MD Result Viewer",
                        reps=DEFAULT_MOLECULAR_REPRESENTATIONS,
                        config=DEFAULT_MOLECULAR_SETTINGS
                    )
                    
                    md_log = gr.Textbox(label="Log", interactive=False, lines=15)
                    md_script = gr.Code(label="Reproduction Script", language="python", interactive=False, lines=20)
                    md_explain = gr.Markdown()
                    
                    task_name_md.change(
                        lambda x: (
                            gr.update(visible=x in ["OMol", "OMol-Direct"]),
                            gr.update(visible=x in ["OMol", "OMol-Direct"])
                        ),
                        [task_name_md],
                        [charge_md, spin_md]
                    )
                    
            run_md_btn.click(
                md_wrapper,
                [xyz_md, task_name_md, charge_md, spin_md, steps_md, temp_md, timestep_md, ensemble_md],
                [md_status, md_traj, md_log, md_script, md_explain, md_viewer]
            )

        # -------- Relax --------
        with gr.Tab("Relaxation / Optimization"):
            with gr.Row():
                with gr.Column(scale=2):
                    gr.Markdown("## Structure Relaxation/Optimization")
                    
                    xyz_rlx = gr.File(
                        label="Upload Structure File",
                        file_types=[".xyz", ".pdb", ".cif", ".traj", ".mol", ".sdf"],
                        file_count="single"
                    )
                    task_name_rlx = gr.Radio(
                        ["OMol", "OMat", "OMol-Direct"],
                        value="OMol",
                        label="Model Type"
                    )
                    with gr.Row():
                        steps_rlx = gr.Slider(1, 2000, 300, step=1, label="Max Steps")
                        fmax_rlx = gr.Slider(0.001, 0.5, 0.05, step=0.001, label="Fmax (eV/Å)")
                    with gr.Row():
                        charge_rlx = gr.Slider(-10, 10, 0, step=1, label="Charge")
                        spin_rlx = gr.Slider(1, 11, 1, step=1, label="Spin")
                    relax_cell = gr.Checkbox(False, label="Relax Unit Cell")
                    run_rlx_btn = gr.Button("Run Optimization", variant="primary")

                with gr.Column(variant="panel", min_width=520):
                    rlx_status = gr.Textbox(label="Status", interactive=False)
                    rlx_traj = gr.File(label="Trajectory (.traj)", interactive=False)
                    
                    rlx_viewer = Molecule3D(
                        label="Optimized Structure Viewer",
                        reps=DEFAULT_MOLECULAR_REPRESENTATIONS,
                        config=DEFAULT_MOLECULAR_SETTINGS
                    )
                    
                    rlx_log = gr.Textbox(label="Log", interactive=False, lines=15)
                    rlx_script = gr.Code(label="Reproduction Script", language="python", interactive=False, lines=20)
                    rlx_explain = gr.Markdown()

                    task_name_rlx.change(
                        lambda x: (
                            gr.update(visible=x in ["OMol", "OMol-Direct"]),
                            gr.update(visible=x in ["OMol", "OMol-Direct"])
                        ),
                        [task_name_rlx],
                        [charge_rlx, spin_rlx]
                    )
                    
            run_rlx_btn.click(
                relax_wrapper,
                [xyz_rlx, task_name_rlx, steps_rlx, fmax_rlx, charge_rlx, spin_rlx, relax_cell],
                [rlx_status, rlx_traj, rlx_log, rlx_script, rlx_explain, rlx_viewer]
            )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True)