# simulation_scripts_orbmol.py """ Minimal FAIRChem-like simulation helpers for OrbMol (local inference). Usage from app.py: from simulation_scripts_orbmol import ( load_orbmol_model, validate_ase_atoms, run_md_simulation, run_relaxation_simulation, atoms_to_xyz, last_frame_xyz_from_traj, ) """ from __future__ import annotations import os import tempfile from pathlib import Path from typing import Tuple import numpy as np import ase import ase.io from ase import units from ase.io.trajectory import Trajectory from ase.optimize import LBFGS from ase.filters import FrechetCellFilter from ase.md import MDLogger from ase.md.velocitydistribution import MaxwellBoltzmannDistribution from ase.md.verlet import VelocityVerlet from ase.md.nose_hoover_chain import NoseHooverChainNVT # OrbMol from orb_models.forcefield import pretrained from orb_models.forcefield.calculator import ORBCalculator # ----------------------------- # Global model (lazy singleton) # ----------------------------- _model_calc: ORBCalculator | None = None def load_orbmol_model(device: str = "cpu", precision: str = "float32-high") -> ORBCalculator: """ Load OrbMol once and reuse the same calculator. """ global _model_calc if _model_calc is None: orbff = pretrained.orb_v3_conservative_inf_omat( device=device, precision=precision, ) _model_calc = ORBCalculator(orbff, device=device) return _model_calc # ----------------------------- # Helpers # ----------------------------- def atoms_to_xyz(atoms: ase.Atoms) -> str: """ Convert ASE Atoms to an XYZ string for quick visualization. """ lines = [str(len(atoms)), "generated by simulation_scripts_orbmol"] for s, (x, y, z) in zip(atoms.get_chemical_symbols(), atoms.get_positions()): lines.append(f"{s} {x:.6f} {y:.6f} {z:.6f}") return "\n".join(lines) def last_frame_xyz_from_traj(traj_path: str | Path) -> str: """ Read the last frame of an ASE .traj and return it as XYZ string. """ tr = Trajectory(str(traj_path)) last = tr[-1] return atoms_to_xyz(last) def _center_atoms(atoms: ase.Atoms) -> None: """ Center coordinates for nicer visualization (no effect on energies). """ atoms.positions -= atoms.get_center_of_mass() if atoms.cell is not None and np.array(atoms.cell).any(): cell_center = atoms.get_cell().sum(axis=0) / 2 atoms.positions += cell_center def _string_looks_like_xyz(text: str) -> bool: """ Heurística simple para detectar si un input es un XYZ en texto. """ if not isinstance(text, str): return False lines = [l for l in text.strip().splitlines() if l.strip()] if len(lines) < 2: return False # primera línea: número de átomos try: _ = int(lines[0].split()[0]) return True except Exception: return False def _materialize_input_to_file(input_or_path: str | Path) -> Tuple[str, bool]: """ Devuelve (file_path, is_temp). Si input es un string XYZ, lo guarda a un .xyz temporal. Si es una ruta existente, la devuelve tal cual. """ # Caso: dict de Gradio File {'path': ...} if isinstance(input_or_path, dict) and "path" in input_or_path: p = input_or_path["path"] return p, False # Caso: Path o ruta existente if isinstance(input_or_path, (str, Path)) and os.path.exists(str(input_or_path)): return str(input_or_path), False # Caso: probablemente es un string XYZ if isinstance(input_or_path, str) and _string_looks_like_xyz(input_or_path): tf = tempfile.NamedTemporaryFile(mode="w", suffix=".xyz", delete=False) tf.write(input_or_path) tf.flush() tf.close() return tf.name, True raise ValueError("Input must be an existing file path or a valid XYZ string.") def validate_ase_atoms(structure_file: str | Path, max_atoms: int = 5000) -> ase.Atoms: """ Read & validate an ASE-compatible file; ensures uniform PBC and non-empty. Returns a centered Atoms object. """ if not structure_file: raise ValueError("Missing input structure file path.") atoms = ase.io.read(str(structure_file)) if len(atoms) == 0: raise ValueError("No atoms found in the input structure.") # Uniform PBC (all True or all False). Mixed PBC often breaks MD settings. pbc = np.array(atoms.pbc, dtype=bool) if not (pbc.all() or (~pbc).all()): raise ValueError(f"Mixed PBC {atoms.pbc} not supported. Set all True or all False.") if len(atoms) > max_atoms: raise ValueError( f"Structure has {len(atoms)} atoms, exceeding the limit of {max_atoms} for this demo." ) _center_atoms(atoms) return atoms # ----------------------------- # Molecular Dynamics (MD) # ----------------------------- def run_md_simulation( structure_file_or_xyz: str | Path, num_steps: int, num_prerelax_steps: int, md_timestep: float, # fs temperature_k: float, # K md_ensemble: str, # "NVE" or "NVT" total_charge: int, spin_multiplicity: int, explanation: str | None = None, ) -> tuple[str, str, str, str]: """ Run short MD using OrbMol. Accepts a path or an XYZ string. Returns: (traj_path, md_log_text, reproduction_script, explanation) """ traj_path = None md_log_path = None atoms = None realized_path = None is_temp = False try: # Permitir tanto ruta como string XYZ realized_path, is_temp = _materialize_input_to_file(structure_file_or_xyz) atoms = validate_ase_atoms(realized_path) # Attach the calculator calc = load_orbmol_model() atoms.info["charge"] = int(total_charge) atoms.info["spin"] = int(spin_multiplicity) atoms.calc = calc # Output files with tempfile.NamedTemporaryFile(suffix=".traj", delete=False) as tf: traj_path = tf.name with tempfile.NamedTemporaryFile(suffix=".log", delete=False) as lf: md_log_path = lf.name # Quick pre-relaxation to remove bad contacts opt = LBFGS(atoms, logfile=md_log_path, trajectory=traj_path) if int(num_prerelax_steps) > 0: opt.run(fmax=0.05, steps=int(num_prerelax_steps)) # Initialize velocities (double T after relaxation as in UMA demo) MaxwellBoltzmannDistribution(atoms, temperature_K=2 * float(temperature_k)) # Choose integrator/ensemble if md_ensemble.upper() == "NVT": dyn = NoseHooverChainNVT( atoms, timestep=float(md_timestep) * units.fs, temperature_K=float(temperature_k), tdamp=10 * float(md_timestep) * units.fs, ) else: dyn = VelocityVerlet(atoms, timestep=float(md_timestep) * units.fs) # Attach trajectory writer and MD logger traj = Trajectory(traj_path, "a", atoms) dyn.attach(traj.write, interval=1) dyn.attach( MDLogger( dyn, atoms, md_log_path, header=True, stress=False, peratom=True, mode="a" ), interval=10, ) # Run MD dyn.run(int(num_steps)) # Prepare reproduction script (using OrbMol locally) reproduction_script = f"""\ import ase.io from ase.md.velocitydistribution import MaxwellBoltzmannDistribution from ase.md.verlet import VelocityVerlet from ase.md.nose_hoover_chain import NoseHooverChainNVT from ase.optimize import LBFGS from ase.io.trajectory import Trajectory from ase.md import MDLogger from ase import units from orb_models.forcefield import pretrained from orb_models.forcefield.calculator import ORBCalculator atoms = ase.io.read('input_file.traj') # any ASE-readable file atoms.info['charge'] = {int(total_charge)} atoms.info['spin'] = {int(spin_multiplicity)} orbff = pretrained.orb_v3_conservative_inf_omat(device='cpu', precision='float32-high') atoms.calc = ORBCalculator(orbff, device='cpu') opt = LBFGS(atoms, trajectory='relaxation_output.traj') opt.run(fmax=0.05, steps={int(num_prerelax_steps)}) MaxwellBoltzmannDistribution(atoms, temperature_K={float(temperature_k)}*2) ensemble = '{md_ensemble.upper()}' if ensemble == 'NVT': dyn = NoseHooverChainNVT(atoms, timestep={float(md_timestep)}*units.fs, temperature_K={float(temperature_k)}, tdamp=10*{float(md_timestep)}*units.fs) else: dyn = VelocityVerlet(atoms, timestep={float(md_timestep)}*units.fs) dyn.attach(MDLogger(dyn, atoms, 'md.log', header=True, stress=False, peratom=True, mode='w'), interval=10) traj = Trajectory('md_output.traj', 'w', atoms) dyn.attach(traj.write, interval=1) dyn.run({int(num_steps)}) """ md_log_text = Path(md_log_path).read_text(encoding="utf-8", errors="ignore") if explanation is None: explanation = ( f"MD of {len(atoms)} atoms for {int(num_steps)} steps at " f"{float(temperature_k)} K, timestep {float(md_timestep)} fs, " f"ensemble {md_ensemble.upper()} (prerelax {int(num_prerelax_steps)} steps)." ) return traj_path, md_log_text, reproduction_script, explanation except Exception as e: raise RuntimeError(f"Error running MD: {e}") from e finally: # Detach calculator to free memory if atoms is not None and getattr(atoms, "calc", None) is not None: atoms.calc = None # Limpieza del .xyz temporal si lo generamos nosotros if is_temp and realized_path and os.path.exists(realized_path): try: os.remove(realized_path) except Exception: pass # ----------------------------- # Geometry optimization # ----------------------------- def run_relaxation_simulation( structure_file_or_xyz: str | Path, num_steps: int, fmax: float, # eV/Å total_charge: int, spin_multiplicity: int, relax_unit_cell: bool, explanation: str | None = None, ) -> tuple[str, str, str, str]: """ Run LBFGS relaxation (with optional cell relaxation). Accepts a path or an XYZ string. Returns: (traj_path, log_text, reproduction_script, explanation) """ traj_path = None opt_log_path = None atoms = None realized_path = None is_temp = False try: realized_path, is_temp = _materialize_input_to_file(structure_file_or_xyz) atoms = validate_ase_atoms(realized_path) calc = load_orbmol_model() atoms.info["charge"] = int(total_charge) atoms.info["spin"] = int(spin_multiplicity) atoms.calc = calc with tempfile.NamedTemporaryFile(suffix=".traj", delete=False) as tf: traj_path = tf.name with tempfile.NamedTemporaryFile(suffix=".log", delete=False) as lf: opt_log_path = lf.name subject = FrechetCellFilter(atoms) if relax_unit_cell else atoms optimizer = LBFGS(subject, trajectory=traj_path, logfile=opt_log_path) optimizer.run(fmax=float(fmax), steps=int(num_steps)) reproduction_script = f"""\ import ase.io from ase.optimize import LBFGS from ase.filters import FrechetCellFilter from orb_models.forcefield import pretrained from orb_models.forcefield.calculator import ORBCalculator atoms = ase.io.read('input_file.traj') atoms.info['charge'] = {int(total_charge)} atoms.info['spin'] = {int(spin_multiplicity)} orbff = pretrained.orb_v3_conservative_inf_omat(device='cpu', precision='float32-high') atoms.calc = ORBCalculator(orbff, device='cpu') relax_unit_cell = {bool(relax_unit_cell)} subject = FrechetCellFilter(atoms) if relax_unit_cell else atoms optimizer = LBFGS(subject, trajectory='relaxation_output.traj') optimizer.run(fmax={float(fmax)}, steps={int(num_steps)}) """ log_text = Path(opt_log_path).read_text(encoding="utf-8", errors="ignore") if explanation is None: explanation = ( f"Relaxation of {len(atoms)} atoms for up to {int(num_steps)} steps " f"with fmax {float(fmax)} eV/Å (relax_cell={bool(relax_unit_cell)})." ) return traj_path, log_text, reproduction_script, explanation except Exception as e: raise RuntimeError(f"Error running relaxation: {e}") from e finally: if atoms is not None and getattr(atoms, "calc", None) is not None: atoms.calc = None if is_temp and realized_path and os.path.exists(realized_path): try: os.remove(realized_path) except Exception: pass