Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Upload 5 files
Browse files- app.py +45 -0
 - background_task.py +247 -0
 - matchmaking.py +76 -0
 - requirements.txt +5 -0
 - utils.py +13 -0
 
    	
        app.py
    ADDED
    
    | 
         @@ -0,0 +1,45 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import gradio as gr
         
     | 
| 2 | 
         
            +
            from huggingface_hub import HfApi
         
     | 
| 3 | 
         
            +
            from matchmaking import *
         
     | 
| 4 | 
         
            +
            from background_task import init_matchmaking, get_elo_data
         
     | 
| 5 | 
         
            +
            from apscheduler.schedulers.background import BackgroundScheduler
         
     | 
| 6 | 
         
            +
            from utils import *
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            matchmaking = Matchmaking()
         
     | 
| 9 | 
         
            +
            api = HfApi()
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            # launch
         
     | 
| 12 | 
         
            +
            scheduler = BackgroundScheduler()
         
     | 
| 13 | 
         
            +
            scheduler.add_job(func=init_matchmaking, trigger="interval", seconds=300)
         
     | 
| 14 | 
         
            +
            scheduler.start()
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            def update_elos():
         
     | 
| 18 | 
         
            +
                matchmaking.read_history()
         
     | 
| 19 | 
         
            +
                matchmaking.compute_elo()
         
     | 
| 20 | 
         
            +
                matchmaking.save_elo_data()
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            with gr.Blocks() as block:
         
     | 
| 24 | 
         
            +
                gr.Markdown(f"""
         
     | 
| 25 | 
         
            +
                    # 🏆 AI vs. AI SoccerTwos Leaderboard ⚽ 
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
                    In this leaderboard, you can find the ELO score and the rank of your trained model for the SoccerTwos environment.
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
                    If you want to know more about a model, just **copy the username and model and paste them into the search bar**.
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
                    👀 To visualize your agents competing check this demo: https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
                    🤖 For more information about this AI vs. AI challenge and to participate? [Check this](https://huggingface.co/deep-rl-course/unit7)
         
     | 
| 34 | 
         
            +
                    """)
         
     | 
| 35 | 
         
            +
                with gr.Row():
         
     | 
| 36 | 
         
            +
                    output = gr.components.Dataframe(
         
     | 
| 37 | 
         
            +
                        value=get_elo_data,
         
     | 
| 38 | 
         
            +
                        headers=["Ranking 🏆", "User 🤗", "Model id 🤖", "ELO 🚀", "Games played 🎮"],
         
     | 
| 39 | 
         
            +
                        datatype=["number", "markdown", "markdown", "number", "number"]
         
     | 
| 40 | 
         
            +
                    )
         
     | 
| 41 | 
         
            +
                with gr.Row():
         
     | 
| 42 | 
         
            +
                    refresh = gr.Button("Refresh")
         
     | 
| 43 | 
         
            +
                    refresh.click(get_elo_data, inputs=[], outputs=output)
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
            block.launch()
         
     | 
    	
        background_task.py
    ADDED
    
    | 
         @@ -0,0 +1,247 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
            +
            import random
         
     | 
| 3 | 
         
            +
            import subprocess
         
     | 
| 4 | 
         
            +
            import pandas as pd
         
     | 
| 5 | 
         
            +
            from datetime import datetime
         
     | 
| 6 | 
         
            +
            from huggingface_hub import HfApi, Repository
         
     | 
| 7 | 
         
            +
            from utils import *
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            DATASET_REPO_URL = "https://huggingface.co/datasets/huggingface-projects/bot-fight-data"
         
     | 
| 10 | 
         
            +
            DATASET_TEMP_REPO_URL = "https://huggingface.co/datasets/huggingface-projects/temp-match-results"
         
     | 
| 11 | 
         
            +
            FILTER_FILE = "https://huggingface.co/datasets/huggingface-projects/filter-bad-models/raw/main/bad_models.csv"
         
     | 
| 12 | 
         
            +
            ELO_FILENAME = "soccer_elo.csv"
         
     | 
| 13 | 
         
            +
            HISTORY_FILENAME = "soccer_history.csv"
         
     | 
| 14 | 
         
            +
            TEMP_FILENAME = "results.csv"
         
     | 
| 15 | 
         
            +
            ELO_DIR = "soccer_elo"
         
     | 
| 16 | 
         
            +
            TEMP_DIR = "temp"
         
     | 
| 17 | 
         
            +
            HF_TOKEN = os.environ.get("HF_TOKEN")
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            repo = Repository(
         
     | 
| 20 | 
         
            +
                local_dir=ELO_DIR, clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
         
     | 
| 21 | 
         
            +
            )
         
     | 
| 22 | 
         
            +
            repo_temp = Repository(
         
     | 
| 23 | 
         
            +
                local_dir=TEMP_DIR, clone_from=DATASET_TEMP_REPO_URL, use_auth_token=HF_TOKEN
         
     | 
| 24 | 
         
            +
            )
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            api = HfApi()
         
     | 
| 27 | 
         
            +
            os.chmod('./SoccerTows.x86_64', 0o755)
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            class Model:
         
     | 
| 31 | 
         
            +
                """
         
     | 
| 32 | 
         
            +
                Class containing the info of a model.
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                :param name: Name of the model
         
     | 
| 35 | 
         
            +
                :param elo: Elo rating of the model
         
     | 
| 36 | 
         
            +
                :param games_played: Number of games played by the model (useful if we implement sigma uncertainty)
         
     | 
| 37 | 
         
            +
                """
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
                def __init__(self, author, name, elo=1200, games_played=0):
         
     | 
| 40 | 
         
            +
                    self.author = author
         
     | 
| 41 | 
         
            +
                    self.name = name
         
     | 
| 42 | 
         
            +
                    self.elo = elo
         
     | 
| 43 | 
         
            +
                    self.games_played = games_played
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
            class Matchmaking:
         
     | 
| 47 | 
         
            +
                """
         
     | 
| 48 | 
         
            +
                Class managing the matchmaking between the models.
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
                :param models: List of models
         
     | 
| 51 | 
         
            +
                :param queue: Temporary list of models used for the matching process
         
     | 
| 52 | 
         
            +
                :param k: Dev coefficient
         
     | 
| 53 | 
         
            +
                :param max_diff: Maximum difference considered between two models' elo
         
     | 
| 54 | 
         
            +
                :param matches: Dictionary containing the match history (to later upload as CSV)
         
     | 
| 55 | 
         
            +
                """
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
                def __init__(self, models):
         
     | 
| 58 | 
         
            +
                    self.models = models
         
     | 
| 59 | 
         
            +
                    self.queue = self.models.copy()
         
     | 
| 60 | 
         
            +
                    self.k = 20
         
     | 
| 61 | 
         
            +
                    self.max_diff = 500
         
     | 
| 62 | 
         
            +
                    self.matches = {
         
     | 
| 63 | 
         
            +
                        "model1": [],
         
     | 
| 64 | 
         
            +
                        "model2": [],
         
     | 
| 65 | 
         
            +
                        "timestamp": [],
         
     | 
| 66 | 
         
            +
                        "result": [],
         
     | 
| 67 | 
         
            +
                    }
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
                def run(self):
         
     | 
| 70 | 
         
            +
                    """
         
     | 
| 71 | 
         
            +
                    Run the matchmaking process.
         
     | 
| 72 | 
         
            +
                    Add models to the queue, shuffle it, and match the models one by one to models with close ratings.
         
     | 
| 73 | 
         
            +
                    Compute the new elo for each model after each match and add the match to the match history.
         
     | 
| 74 | 
         
            +
                    """
         
     | 
| 75 | 
         
            +
                    self.queue = self.models.copy()
         
     | 
| 76 | 
         
            +
                    random.shuffle(self.queue)
         
     | 
| 77 | 
         
            +
                    while len(self.queue) > 1:
         
     | 
| 78 | 
         
            +
                        print(f"Queue length: {len(self.queue)}")
         
     | 
| 79 | 
         
            +
                        model1 = self.queue.pop(0)
         
     | 
| 80 | 
         
            +
                        model2 = self.queue.pop(self.find_n_closest_indexes(model1, 10))
         
     | 
| 81 | 
         
            +
                        match(model1, model2)
         
     | 
| 82 | 
         
            +
                    self.load_results()
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
                def load_results(self):
         
     | 
| 85 | 
         
            +
                    """ Load the match history from the hub. """
         
     | 
| 86 | 
         
            +
                    repo.git_pull()
         
     | 
| 87 | 
         
            +
                    results = pd.read_csv(
         
     | 
| 88 | 
         
            +
                        "https://huggingface.co/datasets/huggingface-projects/temp-match-results/raw/main/results.csv"
         
     | 
| 89 | 
         
            +
                    )
         
     | 
| 90 | 
         
            +
                    # while len(results) < len(self.matches["model1"]):
         
     | 
| 91 | 
         
            +
                    #     time.sleep(60)
         
     | 
| 92 | 
         
            +
                    #     results = pd.read_csv(
         
     | 
| 93 | 
         
            +
                    #         "https://huggingface.co/datasets/huggingface-projects/temp-match-results/raw/main/results.csv"
         
     | 
| 94 | 
         
            +
                    #     )
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
                    for i, row in results.iterrows():
         
     | 
| 97 | 
         
            +
                        model1 = row["model1"].split("/")
         
     | 
| 98 | 
         
            +
                        model2 = row["model2"].split("/")
         
     | 
| 99 | 
         
            +
                        model1 = self.find_model(model1[0], model1[1])
         
     | 
| 100 | 
         
            +
                        model2 = self.find_model(model2[0], model2[1])
         
     | 
| 101 | 
         
            +
                        result = row["result"]
         
     | 
| 102 | 
         
            +
                        if model1 is not None or model2 is not None:
         
     | 
| 103 | 
         
            +
                            self.compute_elo(model1, model2, row["result"])
         
     | 
| 104 | 
         
            +
                            self.matches["model1"].append(model1.author + "/" + model1.name)
         
     | 
| 105 | 
         
            +
                            self.matches["model2"].append(model2.author + "/" + model2.name)
         
     | 
| 106 | 
         
            +
                            self.matches["result"].append(result)
         
     | 
| 107 | 
         
            +
                            self.matches["timestamp"].append(row["timestamp"])
         
     | 
| 108 | 
         
            +
                            model1.games_played += 1
         
     | 
| 109 | 
         
            +
                            model2.games_played += 1
         
     | 
| 110 | 
         
            +
                    data_dict = {"model1": [], "model2": [], "timestamp": [], "result": []}
         
     | 
| 111 | 
         
            +
                    df = pd.DataFrame(data_dict)
         
     | 
| 112 | 
         
            +
                    print(df.head())
         
     | 
| 113 | 
         
            +
                    repo_temp.git_pull()
         
     | 
| 114 | 
         
            +
                    df.to_csv(os.path.join(TEMP_DIR, TEMP_FILENAME), index=False)
         
     | 
| 115 | 
         
            +
                    repo_temp.push_to_hub(commit_message="Reset results.csv")
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
                def find_model(self, author, name):
         
     | 
| 118 | 
         
            +
                    """ Find a model in the models list. """
         
     | 
| 119 | 
         
            +
                    for model in self.models:
         
     | 
| 120 | 
         
            +
                        if model.author == author and model.name == name:
         
     | 
| 121 | 
         
            +
                            return model
         
     | 
| 122 | 
         
            +
                    return None
         
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
                def compute_elo(self, model1, model2, result):
         
     | 
| 125 | 
         
            +
                    """ Compute the new elo for each model based on a match result. """
         
     | 
| 126 | 
         
            +
                    delta = model1.elo - model2.elo
         
     | 
| 127 | 
         
            +
                    win_probability = 1 / (1 + 10 ** (-delta / 500))
         
     | 
| 128 | 
         
            +
                    model1.elo += self.k * (result - win_probability)
         
     | 
| 129 | 
         
            +
                    model2.elo -= self.k * (result - win_probability)
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
                def find_n_closest_indexes(self, model, n) -> int:
         
     | 
| 132 | 
         
            +
                    """
         
     | 
| 133 | 
         
            +
                    Get a model index with a fairly close rating. If no model is found, return the last model in the queue.
         
     | 
| 134 | 
         
            +
                    We don't always pick the closest rating to add variety to the matchups.
         
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
                    :param model: Model to compare
         
     | 
| 137 | 
         
            +
                    :param n: Number of close models from which to pick a candidate
         
     | 
| 138 | 
         
            +
                    :return: id of the chosen candidate
         
     | 
| 139 | 
         
            +
                    """
         
     | 
| 140 | 
         
            +
                    if len(self.queue) == 1:
         
     | 
| 141 | 
         
            +
                        return 0
         
     | 
| 142 | 
         
            +
                    indexes = []
         
     | 
| 143 | 
         
            +
                    closest_diffs = [9999999] * n
         
     | 
| 144 | 
         
            +
                    for i, m in enumerate(self.queue):
         
     | 
| 145 | 
         
            +
                        modelid1 = model.author + "/" + model.name
         
     | 
| 146 | 
         
            +
                        modelid2 = m.author + "/" + m.name
         
     | 
| 147 | 
         
            +
                        if modelid1 == modelid2:
         
     | 
| 148 | 
         
            +
                            continue
         
     | 
| 149 | 
         
            +
                        diff = abs(m.elo - model.elo)
         
     | 
| 150 | 
         
            +
                        if diff < max(closest_diffs):
         
     | 
| 151 | 
         
            +
                            closest_diffs.append(diff)
         
     | 
| 152 | 
         
            +
                            closest_diffs.sort()
         
     | 
| 153 | 
         
            +
                            closest_diffs.pop()
         
     | 
| 154 | 
         
            +
                            indexes.append(i)
         
     | 
| 155 | 
         
            +
                    random.shuffle(indexes)
         
     | 
| 156 | 
         
            +
                    return indexes[0]
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
                def to_csv(self):
         
     | 
| 159 | 
         
            +
                    """ Save the match history as a CSV file to the hub. """
         
     | 
| 160 | 
         
            +
                    data_dict = {"rank": [], "author": [], "model": [], "elo": [], "games_played": []}
         
     | 
| 161 | 
         
            +
                    sorted_models = sorted(self.models, key=lambda x: x.elo, reverse=True)
         
     | 
| 162 | 
         
            +
                    for i, model in enumerate(sorted_models):
         
     | 
| 163 | 
         
            +
                        data_dict["rank"].append(i + 1)
         
     | 
| 164 | 
         
            +
                        data_dict["author"].append(model.author)
         
     | 
| 165 | 
         
            +
                        data_dict["model"].append(model.name)
         
     | 
| 166 | 
         
            +
                        data_dict["elo"].append(model.elo)
         
     | 
| 167 | 
         
            +
                        data_dict["games_played"].append(model.games_played)
         
     | 
| 168 | 
         
            +
                    df = pd.DataFrame(data_dict)
         
     | 
| 169 | 
         
            +
                    print(df.head())
         
     | 
| 170 | 
         
            +
                    repo.git_pull()
         
     | 
| 171 | 
         
            +
                    history = pd.read_csv(os.path.join(ELO_DIR, HISTORY_FILENAME))
         
     | 
| 172 | 
         
            +
                    new_history = pd.DataFrame(self.matches)
         
     | 
| 173 | 
         
            +
                    history = pd.concat([history, new_history])
         
     | 
| 174 | 
         
            +
                    history.to_csv(os.path.join(ELO_DIR, HISTORY_FILENAME), index=False)
         
     | 
| 175 | 
         
            +
                    df.to_csv(os.path.join(ELO_DIR, ELO_FILENAME), index=False)
         
     | 
| 176 | 
         
            +
                    repo.push_to_hub(commit_message="Update ELO")
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
            def match(model1, model2):
         
     | 
| 180 | 
         
            +
                """
         
     | 
| 181 | 
         
            +
                Simulate a match between two models using the Unity environment.
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
                :param model1: First Model object
         
     | 
| 184 | 
         
            +
                :param model2: Second Model object
         
     | 
| 185 | 
         
            +
                :return: match result (0: model1 lost, 0.5: draw, 1: model1 won)
         
     | 
| 186 | 
         
            +
                """
         
     | 
| 187 | 
         
            +
                model1_id = model1.author + "/" + model1.name
         
     | 
| 188 | 
         
            +
                model2_id = model2.author + "/" + model2.name
         
     | 
| 189 | 
         
            +
                print(f"Running {model1_id} against {model2_id}...")
         
     | 
| 190 | 
         
            +
                subprocess.run(["./SoccerTows.x86_64", "-model1", model1_id, "-model2", model2_id, "-nographics", "-batchmode"])
         
     | 
| 191 | 
         
            +
                print(f"Match {model1_id} against {model2_id} ended.")
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
            def get_models_list(filter_bad_models) -> list:
         
     | 
| 195 | 
         
            +
                """
         
     | 
| 196 | 
         
            +
                Get the list of models from the hub and the ELO file.
         
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
                :return: list of Model objects
         
     | 
| 199 | 
         
            +
                """
         
     | 
| 200 | 
         
            +
                models = []
         
     | 
| 201 | 
         
            +
                models_ids = []
         
     | 
| 202 | 
         
            +
                data = pd.read_csv(os.path.join(DATASET_REPO_URL, "resolve", "main", ELO_FILENAME))
         
     | 
| 203 | 
         
            +
                models_on_hub = api.list_models(filter=["reinforcement-learning", "ml-agents", "ML-Agents-SoccerTwos", "onnx"])
         
     | 
| 204 | 
         
            +
                for i, row in data.iterrows():
         
     | 
| 205 | 
         
            +
                    model_id = row["author"] + "/" + row["model"]
         
     | 
| 206 | 
         
            +
                    if model_id in filter_bad_models:
         
     | 
| 207 | 
         
            +
                        continue
         
     | 
| 208 | 
         
            +
                    models.append(Model(row["author"], row["model"], row["elo"], row["games_played"]))
         
     | 
| 209 | 
         
            +
                    models_ids.append(model_id)
         
     | 
| 210 | 
         
            +
                for model in models_on_hub:
         
     | 
| 211 | 
         
            +
                    if model.modelId in filter_bad_models:
         
     | 
| 212 | 
         
            +
                        continue
         
     | 
| 213 | 
         
            +
                    author, name = model.modelId.split("/")[0], model.modelId.split("/")[1]
         
     | 
| 214 | 
         
            +
                    if model.modelId not in models_ids:
         
     | 
| 215 | 
         
            +
                        models.append(Model(author, name))
         
     | 
| 216 | 
         
            +
                        print("New model found: ", author, "-", name)
         
     | 
| 217 | 
         
            +
                return models
         
     | 
| 218 | 
         
            +
             
     | 
| 219 | 
         
            +
             
     | 
| 220 | 
         
            +
            def get_elo_data() -> pd.DataFrame:
         
     | 
| 221 | 
         
            +
                """
         
     | 
| 222 | 
         
            +
                Get the ELO data from the hub for all the models that have played at least one game.
         
     | 
| 223 | 
         
            +
             
     | 
| 224 | 
         
            +
                :return: ELO data as a pandas DataFrame
         
     | 
| 225 | 
         
            +
                """
         
     | 
| 226 | 
         
            +
                repo.git_pull()
         
     | 
| 227 | 
         
            +
                data = pd.read_csv(os.path.join(DATASET_REPO_URL, "resolve", "main", ELO_FILENAME))    
         
     | 
| 228 | 
         
            +
                
         
     | 
| 229 | 
         
            +
                return data
         
     | 
| 230 | 
         
            +
             
     | 
| 231 | 
         
            +
             
     | 
| 232 | 
         
            +
            def init_matchmaking():
         
     | 
| 233 | 
         
            +
                """
         
     | 
| 234 | 
         
            +
                Run the matchmaking algorithm and save the results to the hub.
         
     | 
| 235 | 
         
            +
             
     | 
| 236 | 
         
            +
                1. Get the list of models from the hub and the ELO data
         
     | 
| 237 | 
         
            +
                2. Match models together based on their ELO rating
         
     | 
| 238 | 
         
            +
                3. Simulate the matches using Unity to get the match result
         
     | 
| 239 | 
         
            +
                4. Compute the new ELO rating for each model
         
     | 
| 240 | 
         
            +
                5. Save the results to the hub
         
     | 
| 241 | 
         
            +
                """
         
     | 
| 242 | 
         
            +
                filter_bad_models = pd.read_csv(FILTER_FILE)["model"].tolist()
         
     | 
| 243 | 
         
            +
                models = get_models_list(filter_bad_models)
         
     | 
| 244 | 
         
            +
                matchmaking = Matchmaking(models)
         
     | 
| 245 | 
         
            +
                matchmaking.run()
         
     | 
| 246 | 
         
            +
                matchmaking.to_csv()
         
     | 
| 247 | 
         
            +
                print("Matchmaking done --", datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"))
         
     | 
    	
        matchmaking.py
    ADDED
    
    | 
         @@ -0,0 +1,76 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import random
         
     | 
| 2 | 
         
            +
            import pandas as pd
         
     | 
| 3 | 
         
            +
            import os
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            class Model:
         
     | 
| 7 | 
         
            +
                """
         
     | 
| 8 | 
         
            +
                Class containing the info of a model.
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
                :param name: Name of the model
         
     | 
| 11 | 
         
            +
                :param elo: Elo rating of the model
         
     | 
| 12 | 
         
            +
                :param games_played: Number of games played by the model (useful if we implement sigma uncertainty)
         
     | 
| 13 | 
         
            +
                """
         
     | 
| 14 | 
         
            +
                def __init__(self, name, elo):
         
     | 
| 15 | 
         
            +
                    self.name = name
         
     | 
| 16 | 
         
            +
                    self.elo = elo
         
     | 
| 17 | 
         
            +
                    self.games_played = 0
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            class Matchmaking:
         
     | 
| 21 | 
         
            +
                """
         
     | 
| 22 | 
         
            +
                Class managing the matchmaking between the models.
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
                :param models: List of models
         
     | 
| 25 | 
         
            +
                :param queue: Temporary list of models used for the matching process
         
     | 
| 26 | 
         
            +
                :param k: Dev coefficient
         
     | 
| 27 | 
         
            +
                :param max_diff: Maximum difference considered between two models' elo
         
     | 
| 28 | 
         
            +
                :param matches: Dictionary containing the match history (to later upload as CSV)
         
     | 
| 29 | 
         
            +
                """
         
     | 
| 30 | 
         
            +
                def __init__(self):
         
     | 
| 31 | 
         
            +
                    self.models = []
         
     | 
| 32 | 
         
            +
                    self.queue = []
         
     | 
| 33 | 
         
            +
                    self.start_elo = 1200
         
     | 
| 34 | 
         
            +
                    self.k = 20
         
     | 
| 35 | 
         
            +
                    self.max_diff = 500
         
     | 
| 36 | 
         
            +
                    self.matches = pd.DataFrame()
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                def read_history(self):
         
     | 
| 39 | 
         
            +
                    """ Read the match history from the CSV files, concat the Dataframes and sort them by datetime. """
         
     | 
| 40 | 
         
            +
                    path = "match_history"
         
     | 
| 41 | 
         
            +
                    files = os.listdir(path)
         
     | 
| 42 | 
         
            +
                    for file in files:
         
     | 
| 43 | 
         
            +
                        self.matches = pd.concat([self.matches, pd.read_csv(os.path.join(path, file))], ignore_index=True)
         
     | 
| 44 | 
         
            +
                    self.matches["datetime"] = pd.to_datetime(self.matches["datetime"], format="%Y-%m-%d %H:%M:%S.%f", errors="coerce")
         
     | 
| 45 | 
         
            +
                    self.matches = self.matches.dropna()
         
     | 
| 46 | 
         
            +
                    self.matches = self.matches.sort_values("datetime")
         
     | 
| 47 | 
         
            +
                    self.matches.reset_index(drop=True, inplace=True)
         
     | 
| 48 | 
         
            +
                    model_names = self.matches["model1"].unique()
         
     | 
| 49 | 
         
            +
                    self.models = [Model(name, self.start_elo) for name in model_names]
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
                def compute_elo(self):
         
     | 
| 52 | 
         
            +
                    """ Compute the elo for each model after each match. """
         
     | 
| 53 | 
         
            +
                    for i, row in self.matches.iterrows():
         
     | 
| 54 | 
         
            +
                        model1 = self.get_model(row["model1"])
         
     | 
| 55 | 
         
            +
                        model2 = self.get_model(row["model2"])
         
     | 
| 56 | 
         
            +
                        result = row["result"]
         
     | 
| 57 | 
         
            +
                        delta = model1.elo - model2.elo
         
     | 
| 58 | 
         
            +
                        win_probability = 1 / (1 + 10 ** (-delta / 500))
         
     | 
| 59 | 
         
            +
                        model1.elo += self.k * (result - win_probability)
         
     | 
| 60 | 
         
            +
                        model2.elo -= self.k * (result - win_probability)
         
     | 
| 61 | 
         
            +
                        model1.games_played += 1
         
     | 
| 62 | 
         
            +
                        model2.games_played += 1
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                def save_elo_data(self):
         
     | 
| 65 | 
         
            +
                    """ Save the match history as a CSV file to the hub. """
         
     | 
| 66 | 
         
            +
                    df = pd.DataFrame(columns=['name', 'elo'])
         
     | 
| 67 | 
         
            +
                    for model in self.models:
         
     | 
| 68 | 
         
            +
                        df = pd.concat([df, pd.DataFrame([[model.name, model.elo]], columns=['name', 'elo'])])
         
     | 
| 69 | 
         
            +
                    df.to_csv('elo.csv', index=False)
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                def get_model(self, name):
         
     | 
| 72 | 
         
            +
                    """ Return the Model with the given name. """
         
     | 
| 73 | 
         
            +
                    for model in self.models:
         
     | 
| 74 | 
         
            +
                        if model.name == name:
         
     | 
| 75 | 
         
            +
                            return model
         
     | 
| 76 | 
         
            +
                    return None
         
     | 
    	
        requirements.txt
    ADDED
    
    | 
         @@ -0,0 +1,5 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            requests~=2.28.1
         
     | 
| 2 | 
         
            +
            gradio~=3.14.0
         
     | 
| 3 | 
         
            +
            pandas~=1.5.2
         
     | 
| 4 | 
         
            +
            datasets~=2.8.0
         
     | 
| 5 | 
         
            +
            APScheduler~=3.9.1.post1
         
     | 
    	
        utils.py
    ADDED
    
    | 
         @@ -0,0 +1,13 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # Based on Omar Sanseviero work
         
     | 
| 2 | 
         
            +
            # Make model clickable link
         
     | 
| 3 | 
         
            +
            def make_clickable_model(model_name):
         
     | 
| 4 | 
         
            +
                # remove user from model name
         
     | 
| 5 | 
         
            +
                model_name_show = ' '.join(model_name.split('/')[1:])
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
                link = "https://huggingface.co/" + model_name
         
     | 
| 8 | 
         
            +
                return f'<a target="_blank" href="{link}">{model_name_show}</a>'
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            # Make user clickable link
         
     | 
| 11 | 
         
            +
            def make_clickable_user(user_id):
         
     | 
| 12 | 
         
            +
                link = "https://huggingface.co/" + user_id
         
     | 
| 13 | 
         
            +
                return f'<a  target="_blank" href="{link}">{user_id}</a>'
         
     |