Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
added info on unique users
Browse files
app.py
CHANGED
|
@@ -160,13 +160,13 @@ def update_data_per_env(rl_env):
|
|
| 160 |
|
| 161 |
|
| 162 |
|
| 163 |
-
def get_info_display(
|
| 164 |
if not is_empty:
|
| 165 |
markdown = """
|
| 166 |
<div class='infoPoint'>
|
| 167 |
<h1> {name_leaderboard} </h1>
|
| 168 |
<br>
|
| 169 |
-
<p> This is a leaderboard of <b>{len_dataframe}</b> agents playing {env_name} π©βπ. </p>
|
| 170 |
<br>
|
| 171 |
<p> We use lower bound result to sort the models: mean_reward - std_reward. </p>
|
| 172 |
<br>
|
|
@@ -175,7 +175,7 @@ def get_info_display(len_dataframe,env_name,name_leaderboard,is_empty):
|
|
| 175 |
<p> You want to try your model? Read this <a href="https://github.com/huggingface/deep-rl-class/blob/Unit1/unit1/README.md" target="_blank">Unit 1</a> of Deep Reinforcement Learning Class.
|
| 176 |
</p>
|
| 177 |
</div>
|
| 178 |
-
""".format(len_dataframe =
|
| 179 |
|
| 180 |
else:
|
| 181 |
markdown = """
|
|
@@ -205,7 +205,7 @@ def reload_leaderboard(rl_env):
|
|
| 205 |
|
| 206 |
data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data']
|
| 207 |
|
| 208 |
-
markdown = get_info_display(
|
| 209 |
|
| 210 |
return markdown,data_html
|
| 211 |
|
|
@@ -226,7 +226,7 @@ with block:
|
|
| 226 |
for rl_env in RL_ENVS:
|
| 227 |
with gr.TabItem(rl_env) as rl_tab:
|
| 228 |
data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data']
|
| 229 |
-
markdown = get_info_display(
|
| 230 |
env_state =gr.Variable(default_value=rl_env)
|
| 231 |
output_markdown = gr.HTML(markdown)
|
| 232 |
reload = gr.Button('Reload Leaderboard')
|
|
|
|
| 160 |
|
| 161 |
|
| 162 |
|
| 163 |
+
def get_info_display(dataframe,env_name,name_leaderboard,is_empty):
|
| 164 |
if not is_empty:
|
| 165 |
markdown = """
|
| 166 |
<div class='infoPoint'>
|
| 167 |
<h1> {name_leaderboard} </h1>
|
| 168 |
<br>
|
| 169 |
+
<p> This is a leaderboard of <b>{len_dataframe}</b> agents, from <b>{num_unique_users}</b> unique users, playing {env_name} π©βπ. </p>
|
| 170 |
<br>
|
| 171 |
<p> We use lower bound result to sort the models: mean_reward - std_reward. </p>
|
| 172 |
<br>
|
|
|
|
| 175 |
<p> You want to try your model? Read this <a href="https://github.com/huggingface/deep-rl-class/blob/Unit1/unit1/README.md" target="_blank">Unit 1</a> of Deep Reinforcement Learning Class.
|
| 176 |
</p>
|
| 177 |
</div>
|
| 178 |
+
""".format(len_dataframe = len(dataframe),env_name = env_name,name_leaderboard = name_leaderboard,num_unique_users = len(set(dataframe['User'].values)))
|
| 179 |
|
| 180 |
else:
|
| 181 |
markdown = """
|
|
|
|
| 205 |
|
| 206 |
data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data']
|
| 207 |
|
| 208 |
+
markdown = get_info_display(data_dataframe,rl_env,RL_DETAILS[rl_env]['title'],is_empty)
|
| 209 |
|
| 210 |
return markdown,data_html
|
| 211 |
|
|
|
|
| 226 |
for rl_env in RL_ENVS:
|
| 227 |
with gr.TabItem(rl_env) as rl_tab:
|
| 228 |
data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data']
|
| 229 |
+
markdown = get_info_display(data_dataframe,rl_env,RL_DETAILS[rl_env]['title'],is_empty)
|
| 230 |
env_state =gr.Variable(default_value=rl_env)
|
| 231 |
output_markdown = gr.HTML(markdown)
|
| 232 |
reload = gr.Button('Reload Leaderboard')
|