added table
Browse files- app.py +43 -0
- requirements.txt +2 -0
app.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
|
| 4 |
+
mase = pd.read_csv("results/results_mase.csv")
|
| 5 |
+
datasets = mase.dataset.unique()
|
| 6 |
+
frameworks = mase.framework.unique()
|
| 7 |
+
mase.set_index(["dataset", "framework"], inplace=True)
|
| 8 |
+
|
| 9 |
+
data = {"Dataset": datasets}
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def mean(data, framework):
|
| 13 |
+
try:
|
| 14 |
+
return f"{round(mase.loc[data, framework].metric_error.mean(),3)} +/- {round(mase.loc[data, framework].metric_error.std(),3)}"
|
| 15 |
+
except KeyError as e:
|
| 16 |
+
return "n/a"
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
for framework in frameworks:
|
| 20 |
+
data.update({framework: mean(data, framework) for data in datasets})
|
| 21 |
+
|
| 22 |
+
df = pd.DataFrame(data=data)
|
| 23 |
+
table = df.to_markdown()
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
with gr.Blocks() as demo:
|
| 27 |
+
gr.Markdown(
|
| 28 |
+
f"""
|
| 29 |
+
# Time Series Forecasting Leaderboard
|
| 30 |
+
|
| 31 |
+
This is a leaderboard of the MASE metric for time series forecasting problem on the different open datasets and models.
|
| 32 |
+
|
| 33 |
+
The table is generated from the paper [AutoGluon–TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://github.com/autogluon/autogluon) by
|
| 34 |
+
Oleksandr Shchur, Caner Turkmen, Nick Erickson, Huibin Shen, Alexander Shirkov, Tony Hu, and Bernie Wang.
|
| 35 |
+
|
| 36 |
+
## MASE Metric
|
| 37 |
+
|
| 38 |
+
{table}
|
| 39 |
+
"""
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
if __name__ == "__main__":
|
| 43 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
tabulate
|
| 2 |
+
pandas
|