Spaces:
Build error
Build error
meg-huggingface
commited on
Commit
·
e8ac901
1
Parent(s):
2981bb2
Merging back dataset statistics
Browse files
data_measurements/dataset_statistics.py
ADDED
|
@@ -0,0 +1,1313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import json
|
| 16 |
+
import logging
|
| 17 |
+
import statistics
|
| 18 |
+
import torch
|
| 19 |
+
from os import mkdir
|
| 20 |
+
from os.path import exists, isdir
|
| 21 |
+
from os.path import join as pjoin
|
| 22 |
+
|
| 23 |
+
import nltk
|
| 24 |
+
import numpy as np
|
| 25 |
+
import pandas as pd
|
| 26 |
+
import plotly
|
| 27 |
+
import plotly.express as px
|
| 28 |
+
import plotly.figure_factory as ff
|
| 29 |
+
import plotly.graph_objects as go
|
| 30 |
+
import pyarrow.feather as feather
|
| 31 |
+
import matplotlib.pyplot as plt
|
| 32 |
+
import matplotlib.image as mpimg
|
| 33 |
+
import seaborn as sns
|
| 34 |
+
from datasets import load_from_disk
|
| 35 |
+
from nltk.corpus import stopwords
|
| 36 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
| 37 |
+
|
| 38 |
+
from .dataset_utils import (
|
| 39 |
+
TOT_WORDS,
|
| 40 |
+
TOT_OPEN_WORDS,
|
| 41 |
+
CNT,
|
| 42 |
+
DEDUP_TOT,
|
| 43 |
+
EMBEDDING_FIELD,
|
| 44 |
+
LENGTH_FIELD,
|
| 45 |
+
OUR_LABEL_FIELD,
|
| 46 |
+
OUR_TEXT_FIELD,
|
| 47 |
+
PROP,
|
| 48 |
+
TEXT_NAN_CNT,
|
| 49 |
+
TOKENIZED_FIELD,
|
| 50 |
+
TXT_LEN,
|
| 51 |
+
VOCAB,
|
| 52 |
+
WORD,
|
| 53 |
+
extract_field,
|
| 54 |
+
load_truncated_dataset,
|
| 55 |
+
)
|
| 56 |
+
from .embeddings import Embeddings
|
| 57 |
+
from .npmi import nPMI
|
| 58 |
+
from .zipf import Zipf
|
| 59 |
+
|
| 60 |
+
pd.options.display.float_format = "{:,.3f}".format
|
| 61 |
+
|
| 62 |
+
logs = logging.getLogger(__name__)
|
| 63 |
+
logs.setLevel(logging.WARNING)
|
| 64 |
+
logs.propagate = False
|
| 65 |
+
|
| 66 |
+
if not logs.handlers:
|
| 67 |
+
|
| 68 |
+
# Logging info to log file
|
| 69 |
+
file = logging.FileHandler("./log_files/dataset_statistics.log")
|
| 70 |
+
fileformat = logging.Formatter("%(asctime)s:%(message)s")
|
| 71 |
+
file.setLevel(logging.INFO)
|
| 72 |
+
file.setFormatter(fileformat)
|
| 73 |
+
|
| 74 |
+
# Logging debug messages to stream
|
| 75 |
+
stream = logging.StreamHandler()
|
| 76 |
+
streamformat = logging.Formatter("[data_measurements_tool] %(message)s")
|
| 77 |
+
stream.setLevel(logging.WARNING)
|
| 78 |
+
stream.setFormatter(streamformat)
|
| 79 |
+
|
| 80 |
+
logs.addHandler(file)
|
| 81 |
+
logs.addHandler(stream)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
# TODO: Read this in depending on chosen language / expand beyond english
|
| 85 |
+
nltk.download("stopwords")
|
| 86 |
+
_CLOSED_CLASS = (
|
| 87 |
+
stopwords.words("english")
|
| 88 |
+
+ [
|
| 89 |
+
"t",
|
| 90 |
+
"n",
|
| 91 |
+
"ll",
|
| 92 |
+
"d",
|
| 93 |
+
"wasn",
|
| 94 |
+
"weren",
|
| 95 |
+
"won",
|
| 96 |
+
"aren",
|
| 97 |
+
"wouldn",
|
| 98 |
+
"shouldn",
|
| 99 |
+
"didn",
|
| 100 |
+
"don",
|
| 101 |
+
"hasn",
|
| 102 |
+
"ain",
|
| 103 |
+
"couldn",
|
| 104 |
+
"doesn",
|
| 105 |
+
"hadn",
|
| 106 |
+
"haven",
|
| 107 |
+
"isn",
|
| 108 |
+
"mightn",
|
| 109 |
+
"mustn",
|
| 110 |
+
"needn",
|
| 111 |
+
"shan",
|
| 112 |
+
"would",
|
| 113 |
+
"could",
|
| 114 |
+
"dont",
|
| 115 |
+
"u",
|
| 116 |
+
]
|
| 117 |
+
+ [str(i) for i in range(0, 21)]
|
| 118 |
+
)
|
| 119 |
+
_IDENTITY_TERMS = [
|
| 120 |
+
"man",
|
| 121 |
+
"woman",
|
| 122 |
+
"non-binary",
|
| 123 |
+
"gay",
|
| 124 |
+
"lesbian",
|
| 125 |
+
"queer",
|
| 126 |
+
"trans",
|
| 127 |
+
"straight",
|
| 128 |
+
"cis",
|
| 129 |
+
"she",
|
| 130 |
+
"her",
|
| 131 |
+
"hers",
|
| 132 |
+
"he",
|
| 133 |
+
"him",
|
| 134 |
+
"his",
|
| 135 |
+
"they",
|
| 136 |
+
"them",
|
| 137 |
+
"their",
|
| 138 |
+
"theirs",
|
| 139 |
+
"himself",
|
| 140 |
+
"herself",
|
| 141 |
+
]
|
| 142 |
+
# treating inf values as NaN as well
|
| 143 |
+
pd.set_option("use_inf_as_na", True)
|
| 144 |
+
|
| 145 |
+
_MIN_VOCAB_COUNT = 10
|
| 146 |
+
_TREE_DEPTH = 12
|
| 147 |
+
_TREE_MIN_NODES = 250
|
| 148 |
+
# as long as we're using sklearn - already pushing the resources
|
| 149 |
+
_MAX_CLUSTER_EXAMPLES = 5000
|
| 150 |
+
_NUM_VOCAB_BATCHES = 2000
|
| 151 |
+
_TOP_N = 100
|
| 152 |
+
_CVEC = CountVectorizer(token_pattern="(?u)\\b\\w+\\b", lowercase=True)
|
| 153 |
+
|
| 154 |
+
class DatasetStatisticsCacheClass:
|
| 155 |
+
def __init__(
|
| 156 |
+
self,
|
| 157 |
+
cache_dir,
|
| 158 |
+
dset_name,
|
| 159 |
+
dset_config,
|
| 160 |
+
split_name,
|
| 161 |
+
text_field,
|
| 162 |
+
label_field,
|
| 163 |
+
label_names,
|
| 164 |
+
calculation=None,
|
| 165 |
+
use_cache=False,
|
| 166 |
+
):
|
| 167 |
+
# This is only used for standalone runs for each kind of measurement.
|
| 168 |
+
self.calculation = calculation
|
| 169 |
+
self.our_text_field = OUR_TEXT_FIELD
|
| 170 |
+
self.our_length_field = LENGTH_FIELD
|
| 171 |
+
self.our_label_field = OUR_LABEL_FIELD
|
| 172 |
+
self.our_tokenized_field = TOKENIZED_FIELD
|
| 173 |
+
self.our_embedding_field = EMBEDDING_FIELD
|
| 174 |
+
self.cache_dir = cache_dir
|
| 175 |
+
# Use stored data if there; otherwise calculate afresh
|
| 176 |
+
self.use_cache = use_cache
|
| 177 |
+
### What are we analyzing?
|
| 178 |
+
# name of the Hugging Face dataset
|
| 179 |
+
self.dset_name = dset_name
|
| 180 |
+
# name of the dataset config
|
| 181 |
+
self.dset_config = dset_config
|
| 182 |
+
# name of the split to analyze
|
| 183 |
+
self.split_name = split_name
|
| 184 |
+
# TODO: Chould this be "feature" ?
|
| 185 |
+
# which text fields are we analysing?
|
| 186 |
+
self.text_field = text_field
|
| 187 |
+
# which label fields are we analysing?
|
| 188 |
+
self.label_field = label_field
|
| 189 |
+
# what are the names of the classes?
|
| 190 |
+
self.label_names = label_names
|
| 191 |
+
## Hugging Face dataset objects
|
| 192 |
+
self.dset = None # original dataset
|
| 193 |
+
# HF dataset with all of the self.text_field instances in self.dset
|
| 194 |
+
self.text_dset = None
|
| 195 |
+
self.dset_peek = None
|
| 196 |
+
# HF dataset with text embeddings in the same order as self.text_dset
|
| 197 |
+
self.embeddings_dset = None
|
| 198 |
+
# HF dataset with all of the self.label_field instances in self.dset
|
| 199 |
+
self.label_dset = None
|
| 200 |
+
## Data frames
|
| 201 |
+
# Tokenized text
|
| 202 |
+
self.tokenized_df = None
|
| 203 |
+
# save sentence length histogram in the class so it doesn't ge re-computed
|
| 204 |
+
self.length_df = None
|
| 205 |
+
self.fig_tok_length = None
|
| 206 |
+
# Data Frame version of self.label_dset
|
| 207 |
+
self.label_df = None
|
| 208 |
+
# save label pie chart in the class so it doesn't ge re-computed
|
| 209 |
+
self.fig_labels = None
|
| 210 |
+
# Vocabulary with word counts in the dataset
|
| 211 |
+
self.vocab_counts_df = None
|
| 212 |
+
# Vocabulary filtered to remove stopwords
|
| 213 |
+
self.vocab_counts_filtered_df = None
|
| 214 |
+
self.sorted_top_vocab_df = None
|
| 215 |
+
## General statistics and duplicates
|
| 216 |
+
self.total_words = 0
|
| 217 |
+
self.total_open_words = 0
|
| 218 |
+
# Number of NaN values (NOT empty strings)
|
| 219 |
+
self.text_nan_count = 0
|
| 220 |
+
# Number of text items that appear more than once in the dataset
|
| 221 |
+
self.dedup_total = 0
|
| 222 |
+
# Duplicated text items along with their number of occurences ("count")
|
| 223 |
+
self.dup_counts_df = None
|
| 224 |
+
self.avg_length = None
|
| 225 |
+
self.std_length = None
|
| 226 |
+
self.general_stats_dict = None
|
| 227 |
+
self.num_uniq_lengths = 0
|
| 228 |
+
# clustering text by embeddings
|
| 229 |
+
# the hierarchical clustering tree is represented as a list of nodes,
|
| 230 |
+
# the first is the root
|
| 231 |
+
self.node_list = []
|
| 232 |
+
# save tree figure in the class so it doesn't ge re-computed
|
| 233 |
+
self.fig_tree = None
|
| 234 |
+
# keep Embeddings object around to explore clusters
|
| 235 |
+
self.embeddings = None
|
| 236 |
+
# nPMI
|
| 237 |
+
# Holds a nPMIStatisticsCacheClass object
|
| 238 |
+
self.npmi_stats = None
|
| 239 |
+
# TODO: Have lowercase be an option for a user to set.
|
| 240 |
+
self.to_lowercase = True
|
| 241 |
+
# The minimum amount of times a word should occur to be included in
|
| 242 |
+
# word-count-based calculations (currently just relevant to nPMI)
|
| 243 |
+
self.min_vocab_count = _MIN_VOCAB_COUNT
|
| 244 |
+
# zipf
|
| 245 |
+
self.z = None
|
| 246 |
+
self.zipf_fig = None
|
| 247 |
+
self.cvec = _CVEC
|
| 248 |
+
# File definitions
|
| 249 |
+
# path to the directory used for caching
|
| 250 |
+
if not isinstance(text_field, str):
|
| 251 |
+
text_field = "-".join(text_field)
|
| 252 |
+
#if isinstance(label_field, str):
|
| 253 |
+
# label_field = label_field
|
| 254 |
+
#else:
|
| 255 |
+
# label_field = "-".join(label_field)
|
| 256 |
+
self.cache_path = pjoin(
|
| 257 |
+
self.cache_dir,
|
| 258 |
+
f"{dset_name}_{dset_config}_{split_name}_{text_field}", #{label_field},
|
| 259 |
+
)
|
| 260 |
+
if not isdir(self.cache_path):
|
| 261 |
+
logs.warning("Creating cache directory %s." % self.cache_path)
|
| 262 |
+
mkdir(self.cache_path)
|
| 263 |
+
|
| 264 |
+
# Cache files not needed for UI
|
| 265 |
+
self.dset_fid = pjoin(self.cache_path, "base_dset")
|
| 266 |
+
self.tokenized_df_fid = pjoin(self.cache_path, "tokenized_df.feather")
|
| 267 |
+
self.label_dset_fid = pjoin(self.cache_path, "label_dset")
|
| 268 |
+
|
| 269 |
+
# Needed for UI -- embeddings
|
| 270 |
+
self.text_dset_fid = pjoin(self.cache_path, "text_dset")
|
| 271 |
+
# Needed for UI
|
| 272 |
+
self.dset_peek_json_fid = pjoin(self.cache_path, "dset_peek.json")
|
| 273 |
+
|
| 274 |
+
## Label cache files.
|
| 275 |
+
# Needed for UI
|
| 276 |
+
self.fig_labels_json_fid = pjoin(self.cache_path, "fig_labels.json")
|
| 277 |
+
|
| 278 |
+
## Length cache files
|
| 279 |
+
# Needed for UI
|
| 280 |
+
self.length_df_fid = pjoin(self.cache_path, "length_df.feather")
|
| 281 |
+
# Needed for UI
|
| 282 |
+
self.length_stats_json_fid = pjoin(self.cache_path, "length_stats.json")
|
| 283 |
+
self.vocab_counts_df_fid = pjoin(self.cache_path, "vocab_counts.feather")
|
| 284 |
+
# Needed for UI
|
| 285 |
+
self.dup_counts_df_fid = pjoin(self.cache_path, "dup_counts_df.feather")
|
| 286 |
+
# Needed for UI
|
| 287 |
+
self.fig_tok_length_fid = pjoin(self.cache_path, "fig_tok_length.json")
|
| 288 |
+
|
| 289 |
+
## General text stats
|
| 290 |
+
# Needed for UI
|
| 291 |
+
self.general_stats_json_fid = pjoin(self.cache_path, "general_stats_dict.json")
|
| 292 |
+
# Needed for UI
|
| 293 |
+
self.sorted_top_vocab_df_fid = pjoin(self.cache_path,
|
| 294 |
+
"sorted_top_vocab.feather")
|
| 295 |
+
## Zipf cache files
|
| 296 |
+
# Needed for UI
|
| 297 |
+
self.zipf_fid = pjoin(self.cache_path, "zipf_basic_stats.json")
|
| 298 |
+
# Needed for UI
|
| 299 |
+
self.zipf_fig_fid = pjoin(self.cache_path, "zipf_fig.json")
|
| 300 |
+
|
| 301 |
+
## Embeddings cache files
|
| 302 |
+
# Needed for UI
|
| 303 |
+
self.node_list_fid = pjoin(self.cache_path, "node_list.th")
|
| 304 |
+
# Needed for UI
|
| 305 |
+
self.fig_tree_json_fid = pjoin(self.cache_path, "fig_tree.json")
|
| 306 |
+
self.zipf_counts = None
|
| 307 |
+
|
| 308 |
+
self.live = False
|
| 309 |
+
|
| 310 |
+
def set_deployment(self, live=True):
|
| 311 |
+
"""
|
| 312 |
+
Function that we can hit when we deploy, so that cache files are not
|
| 313 |
+
written out/recalculated, but instead that part of the UI can be punted.
|
| 314 |
+
"""
|
| 315 |
+
self.live = live
|
| 316 |
+
|
| 317 |
+
def get_base_dataset(self):
|
| 318 |
+
"""Gets a pointer to the truncated base dataset object."""
|
| 319 |
+
if not self.dset:
|
| 320 |
+
self.dset = load_truncated_dataset(
|
| 321 |
+
self.dset_name,
|
| 322 |
+
self.dset_config,
|
| 323 |
+
self.split_name,
|
| 324 |
+
cache_name=self.dset_fid,
|
| 325 |
+
use_cache=True,
|
| 326 |
+
use_streaming=True,
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
def load_or_prepare_general_stats(self, save=True):
|
| 330 |
+
"""
|
| 331 |
+
Content for expander_general_stats widget.
|
| 332 |
+
Provides statistics for total words, total open words,
|
| 333 |
+
the sorted top vocab, the NaN count, and the duplicate count.
|
| 334 |
+
Args:
|
| 335 |
+
|
| 336 |
+
Returns:
|
| 337 |
+
|
| 338 |
+
"""
|
| 339 |
+
# General statistics
|
| 340 |
+
if (
|
| 341 |
+
self.use_cache
|
| 342 |
+
and exists(self.general_stats_json_fid)
|
| 343 |
+
and exists(self.dup_counts_df_fid)
|
| 344 |
+
and exists(self.sorted_top_vocab_df_fid)
|
| 345 |
+
):
|
| 346 |
+
logs.info('Loading cached general stats')
|
| 347 |
+
self.load_general_stats()
|
| 348 |
+
else:
|
| 349 |
+
if not self.live:
|
| 350 |
+
logs.info('Preparing general stats')
|
| 351 |
+
self.prepare_general_stats()
|
| 352 |
+
if save:
|
| 353 |
+
write_df(self.sorted_top_vocab_df, self.sorted_top_vocab_df_fid)
|
| 354 |
+
write_df(self.dup_counts_df, self.dup_counts_df_fid)
|
| 355 |
+
write_json(self.general_stats_dict, self.general_stats_json_fid)
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def load_or_prepare_text_lengths(self, save=True):
|
| 359 |
+
"""
|
| 360 |
+
The text length widget relies on this function, which provides
|
| 361 |
+
a figure of the text lengths, some text length statistics, and
|
| 362 |
+
a text length dataframe to peruse.
|
| 363 |
+
Args:
|
| 364 |
+
save:
|
| 365 |
+
Returns:
|
| 366 |
+
|
| 367 |
+
"""
|
| 368 |
+
# Text length figure
|
| 369 |
+
if (self.use_cache and exists(self.fig_tok_length_fid)):
|
| 370 |
+
self.fig_tok_length_png = mpimg.imread(self.fig_tok_length_fid)
|
| 371 |
+
self.fig_tok_length = read_plotly(self.fig_tok_length_fid)
|
| 372 |
+
else:
|
| 373 |
+
if not self.live:
|
| 374 |
+
self.prepare_fig_text_lengths()
|
| 375 |
+
if save:
|
| 376 |
+
write_plotly(self.fig_tok_length, self.fig_tok_length_fid)
|
| 377 |
+
|
| 378 |
+
# Text length dataframe
|
| 379 |
+
if self.use_cache and exists(self.length_df_fid):
|
| 380 |
+
self.length_df = feather.read_feather(self.length_df_fid)
|
| 381 |
+
else:
|
| 382 |
+
if not self.live:
|
| 383 |
+
self.prepare_length_df()
|
| 384 |
+
if save:
|
| 385 |
+
write_df(self.length_df, self.length_df_fid)
|
| 386 |
+
|
| 387 |
+
# Text length stats.
|
| 388 |
+
if self.use_cache and exists(self.length_stats_json_fid):
|
| 389 |
+
with open(self.length_stats_json_fid, "r") as f:
|
| 390 |
+
self.length_stats_dict = json.load(f)
|
| 391 |
+
self.avg_length = self.length_stats_dict["avg length"]
|
| 392 |
+
self.std_length = self.length_stats_dict["std length"]
|
| 393 |
+
self.num_uniq_lengths = self.length_stats_dict["num lengths"]
|
| 394 |
+
else:
|
| 395 |
+
if not self.live:
|
| 396 |
+
self.prepare_text_length_stats()
|
| 397 |
+
if save:
|
| 398 |
+
write_json(self.length_stats_dict, self.length_stats_json_fid)
|
| 399 |
+
|
| 400 |
+
def prepare_length_df(self):
|
| 401 |
+
if not self.live:
|
| 402 |
+
if self.tokenized_df is None:
|
| 403 |
+
self.tokenized_df = self.do_tokenization()
|
| 404 |
+
self.tokenized_df[LENGTH_FIELD] = self.tokenized_df[
|
| 405 |
+
TOKENIZED_FIELD].apply(len)
|
| 406 |
+
self.length_df = self.tokenized_df[
|
| 407 |
+
[LENGTH_FIELD, OUR_TEXT_FIELD]].sort_values(
|
| 408 |
+
by=[LENGTH_FIELD], ascending=True
|
| 409 |
+
)
|
| 410 |
+
|
| 411 |
+
def prepare_text_length_stats(self):
|
| 412 |
+
if not self.live:
|
| 413 |
+
if self.tokenized_df is None or LENGTH_FIELD not in self.tokenized_df.columns or self.length_df is None:
|
| 414 |
+
self.prepare_length_df()
|
| 415 |
+
avg_length = sum(self.tokenized_df[LENGTH_FIELD])/len(self.tokenized_df[LENGTH_FIELD])
|
| 416 |
+
self.avg_length = round(avg_length, 1)
|
| 417 |
+
std_length = statistics.stdev(self.tokenized_df[LENGTH_FIELD])
|
| 418 |
+
self.std_length = round(std_length, 1)
|
| 419 |
+
self.num_uniq_lengths = len(self.length_df["length"].unique())
|
| 420 |
+
self.length_stats_dict = {"avg length": self.avg_length,
|
| 421 |
+
"std length": self.std_length,
|
| 422 |
+
"num lengths": self.num_uniq_lengths}
|
| 423 |
+
|
| 424 |
+
def prepare_fig_text_lengths(self):
|
| 425 |
+
if not self.live:
|
| 426 |
+
if self.tokenized_df is None or LENGTH_FIELD not in self.tokenized_df.columns:
|
| 427 |
+
self.prepare_length_df()
|
| 428 |
+
self.fig_tok_length = make_fig_lengths(self.tokenized_df, LENGTH_FIELD)
|
| 429 |
+
|
| 430 |
+
def load_or_prepare_embeddings(self, save=True):
|
| 431 |
+
if self.use_cache and exists(self.node_list_fid) and exists(self.fig_tree_json_fid):
|
| 432 |
+
self.node_list = torch.load(self.node_list_fid)
|
| 433 |
+
self.fig_tree = read_plotly(self.fig_tree_json_fid)
|
| 434 |
+
elif self.use_cache and exists(self.node_list_fid):
|
| 435 |
+
self.node_list = torch.load(self.node_list_fid)
|
| 436 |
+
self.fig_tree = make_tree_plot(self.node_list,
|
| 437 |
+
self.text_dset)
|
| 438 |
+
if save:
|
| 439 |
+
write_plotly(self.fig_tree, self.fig_tree_json_fid)
|
| 440 |
+
else:
|
| 441 |
+
self.embeddings = Embeddings(self, use_cache=self.use_cache)
|
| 442 |
+
self.embeddings.make_hierarchical_clustering()
|
| 443 |
+
self.node_list = self.embeddings.node_list
|
| 444 |
+
self.fig_tree = make_tree_plot(self.node_list,
|
| 445 |
+
self.text_dset)
|
| 446 |
+
if save:
|
| 447 |
+
torch.save(self.node_list, self.node_list_fid)
|
| 448 |
+
write_plotly(self.fig_tree, self.fig_tree_json_fid)
|
| 449 |
+
|
| 450 |
+
# get vocab with word counts
|
| 451 |
+
def load_or_prepare_vocab(self, save=True):
|
| 452 |
+
"""
|
| 453 |
+
Calculates the vocabulary count from the tokenized text.
|
| 454 |
+
The resulting dataframes may be used in nPMI calculations, zipf, etc.
|
| 455 |
+
:param
|
| 456 |
+
:return:
|
| 457 |
+
"""
|
| 458 |
+
if (
|
| 459 |
+
self.use_cache
|
| 460 |
+
and exists(self.vocab_counts_df_fid)
|
| 461 |
+
):
|
| 462 |
+
logs.info("Reading vocab from cache")
|
| 463 |
+
self.load_vocab()
|
| 464 |
+
self.vocab_counts_filtered_df = filter_vocab(self.vocab_counts_df)
|
| 465 |
+
else:
|
| 466 |
+
logs.info("Calculating vocab afresh")
|
| 467 |
+
if len(self.tokenized_df) == 0:
|
| 468 |
+
self.tokenized_df = self.do_tokenization()
|
| 469 |
+
if save:
|
| 470 |
+
logs.info("Writing out.")
|
| 471 |
+
write_df(self.tokenized_df, self.tokenized_df_fid)
|
| 472 |
+
word_count_df = count_vocab_frequencies(self.tokenized_df)
|
| 473 |
+
logs.info("Making dfs with proportion.")
|
| 474 |
+
self.vocab_counts_df = calc_p_word(word_count_df)
|
| 475 |
+
self.vocab_counts_filtered_df = filter_vocab(self.vocab_counts_df)
|
| 476 |
+
if save:
|
| 477 |
+
logs.info("Writing out.")
|
| 478 |
+
write_df(self.vocab_counts_df, self.vocab_counts_df_fid)
|
| 479 |
+
logs.info("unfiltered vocab")
|
| 480 |
+
logs.info(self.vocab_counts_df)
|
| 481 |
+
logs.info("filtered vocab")
|
| 482 |
+
logs.info(self.vocab_counts_filtered_df)
|
| 483 |
+
|
| 484 |
+
def load_vocab(self):
|
| 485 |
+
with open(self.vocab_counts_df_fid, "rb") as f:
|
| 486 |
+
self.vocab_counts_df = feather.read_feather(f)
|
| 487 |
+
# Handling for changes in how the index is saved.
|
| 488 |
+
self.vocab_counts_df = self._set_idx_col_names(self.vocab_counts_df)
|
| 489 |
+
|
| 490 |
+
def load_or_prepare_text_duplicates(self, save=True):
|
| 491 |
+
if self.use_cache and exists(self.dup_counts_df_fid):
|
| 492 |
+
with open(self.dup_counts_df_fid, "rb") as f:
|
| 493 |
+
self.dup_counts_df = feather.read_feather(f)
|
| 494 |
+
elif self.dup_counts_df is None:
|
| 495 |
+
if not self.live:
|
| 496 |
+
self.prepare_text_duplicates()
|
| 497 |
+
if save:
|
| 498 |
+
write_df(self.dup_counts_df, self.dup_counts_df_fid)
|
| 499 |
+
else:
|
| 500 |
+
if not self.live:
|
| 501 |
+
# This happens when self.dup_counts_df is already defined;
|
| 502 |
+
# This happens when general_statistics were calculated first,
|
| 503 |
+
# since general statistics requires the number of duplicates
|
| 504 |
+
if save:
|
| 505 |
+
write_df(self.dup_counts_df, self.dup_counts_df_fid)
|
| 506 |
+
|
| 507 |
+
def load_general_stats(self):
|
| 508 |
+
self.general_stats_dict = json.load(open(self.general_stats_json_fid, encoding="utf-8"))
|
| 509 |
+
with open(self.sorted_top_vocab_df_fid, "rb") as f:
|
| 510 |
+
self.sorted_top_vocab_df = feather.read_feather(f)
|
| 511 |
+
self.text_nan_count = self.general_stats_dict[TEXT_NAN_CNT]
|
| 512 |
+
self.dedup_total = self.general_stats_dict[DEDUP_TOT]
|
| 513 |
+
self.total_words = self.general_stats_dict[TOT_WORDS]
|
| 514 |
+
self.total_open_words = self.general_stats_dict[TOT_OPEN_WORDS]
|
| 515 |
+
|
| 516 |
+
def prepare_general_stats(self):
|
| 517 |
+
if not self.live:
|
| 518 |
+
if self.tokenized_df is None:
|
| 519 |
+
logs.warning("Tokenized dataset not yet loaded; doing so.")
|
| 520 |
+
self.load_or_prepare_dataset()
|
| 521 |
+
if self.vocab_counts_df is None:
|
| 522 |
+
logs.warning("Vocab not yet loaded; doing so.")
|
| 523 |
+
self.load_or_prepare_vocab()
|
| 524 |
+
self.sorted_top_vocab_df = self.vocab_counts_filtered_df.sort_values(
|
| 525 |
+
"count", ascending=False
|
| 526 |
+
).head(_TOP_N)
|
| 527 |
+
self.total_words = len(self.vocab_counts_df)
|
| 528 |
+
self.total_open_words = len(self.vocab_counts_filtered_df)
|
| 529 |
+
self.text_nan_count = int(self.tokenized_df.isnull().sum().sum())
|
| 530 |
+
self.prepare_text_duplicates()
|
| 531 |
+
self.dedup_total = sum(self.dup_counts_df[CNT])
|
| 532 |
+
self.general_stats_dict = {
|
| 533 |
+
TOT_WORDS: self.total_words,
|
| 534 |
+
TOT_OPEN_WORDS: self.total_open_words,
|
| 535 |
+
TEXT_NAN_CNT: self.text_nan_count,
|
| 536 |
+
DEDUP_TOT: self.dedup_total,
|
| 537 |
+
}
|
| 538 |
+
|
| 539 |
+
def prepare_text_duplicates(self):
|
| 540 |
+
if not self.live:
|
| 541 |
+
if self.tokenized_df is None:
|
| 542 |
+
self.load_or_prepare_tokenized_df()
|
| 543 |
+
dup_df = self.tokenized_df[
|
| 544 |
+
self.tokenized_df.duplicated([OUR_TEXT_FIELD])]
|
| 545 |
+
self.dup_counts_df = pd.DataFrame(
|
| 546 |
+
dup_df.pivot_table(
|
| 547 |
+
columns=[OUR_TEXT_FIELD], aggfunc="size"
|
| 548 |
+
).sort_values(ascending=False),
|
| 549 |
+
columns=[CNT],
|
| 550 |
+
)
|
| 551 |
+
self.dup_counts_df[OUR_TEXT_FIELD] = self.dup_counts_df.index.copy()
|
| 552 |
+
|
| 553 |
+
def load_or_prepare_dataset(self, save=True):
|
| 554 |
+
"""
|
| 555 |
+
Prepares the HF datasets and data frames containing the untokenized and
|
| 556 |
+
tokenized text as well as the label values.
|
| 557 |
+
self.tokenized_df is used further for calculating text lengths,
|
| 558 |
+
word counts, etc.
|
| 559 |
+
Args:
|
| 560 |
+
save: Store the calculated data to disk.
|
| 561 |
+
|
| 562 |
+
Returns:
|
| 563 |
+
|
| 564 |
+
"""
|
| 565 |
+
logs.info("Doing text dset.")
|
| 566 |
+
self.load_or_prepare_text_dset(save)
|
| 567 |
+
logs.info("Doing tokenized dataframe")
|
| 568 |
+
self.load_or_prepare_tokenized_df(save)
|
| 569 |
+
logs.info("Doing dataset peek")
|
| 570 |
+
self.load_or_prepare_dset_peek(save)
|
| 571 |
+
|
| 572 |
+
def load_or_prepare_dset_peek(self, save=True):
|
| 573 |
+
if self.use_cache and exists(self.dset_peek_json_fid):
|
| 574 |
+
with open(self.dset_peek_json_fid, "r") as f:
|
| 575 |
+
self.dset_peek = json.load(f)["dset peek"]
|
| 576 |
+
else:
|
| 577 |
+
if self.dset is None:
|
| 578 |
+
self.get_base_dataset()
|
| 579 |
+
self.dset_peek = self.dset[:100]
|
| 580 |
+
if save:
|
| 581 |
+
write_json({"dset peek": self.dset_peek}, self.dset_peek_json_fid)
|
| 582 |
+
|
| 583 |
+
def load_or_prepare_tokenized_df(self, save=True):
|
| 584 |
+
if (self.use_cache and exists(self.tokenized_df_fid)):
|
| 585 |
+
self.tokenized_df = feather.read_feather(self.tokenized_df_fid)
|
| 586 |
+
else:
|
| 587 |
+
if not self.live:
|
| 588 |
+
# tokenize all text instances
|
| 589 |
+
self.tokenized_df = self.do_tokenization()
|
| 590 |
+
if save:
|
| 591 |
+
logs.warning("Saving tokenized dataset to disk")
|
| 592 |
+
# save tokenized text
|
| 593 |
+
write_df(self.tokenized_df, self.tokenized_df_fid)
|
| 594 |
+
|
| 595 |
+
def load_or_prepare_text_dset(self, save=True):
|
| 596 |
+
if (self.use_cache and exists(self.text_dset_fid)):
|
| 597 |
+
# load extracted text
|
| 598 |
+
self.text_dset = load_from_disk(self.text_dset_fid)
|
| 599 |
+
logs.warning("Loaded dataset from disk")
|
| 600 |
+
logs.info(self.text_dset)
|
| 601 |
+
# ...Or load it from the server and store it anew
|
| 602 |
+
else:
|
| 603 |
+
if not self.live:
|
| 604 |
+
self.prepare_text_dset()
|
| 605 |
+
if save:
|
| 606 |
+
# save extracted text instances
|
| 607 |
+
logs.warning("Saving dataset to disk")
|
| 608 |
+
self.text_dset.save_to_disk(self.text_dset_fid)
|
| 609 |
+
|
| 610 |
+
def prepare_text_dset(self):
|
| 611 |
+
if not self.live:
|
| 612 |
+
self.get_base_dataset()
|
| 613 |
+
# extract all text instances
|
| 614 |
+
self.text_dset = self.dset.map(
|
| 615 |
+
lambda examples: extract_field(
|
| 616 |
+
examples, self.text_field, OUR_TEXT_FIELD
|
| 617 |
+
),
|
| 618 |
+
batched=True,
|
| 619 |
+
remove_columns=list(self.dset.features),
|
| 620 |
+
)
|
| 621 |
+
|
| 622 |
+
def do_tokenization(self):
|
| 623 |
+
"""
|
| 624 |
+
Tokenizes the dataset
|
| 625 |
+
:return:
|
| 626 |
+
"""
|
| 627 |
+
if self.text_dset is None:
|
| 628 |
+
self.load_or_prepare_text_dset()
|
| 629 |
+
sent_tokenizer = self.cvec.build_tokenizer()
|
| 630 |
+
|
| 631 |
+
def tokenize_batch(examples):
|
| 632 |
+
# TODO: lowercase should be an option
|
| 633 |
+
res = {
|
| 634 |
+
TOKENIZED_FIELD: [
|
| 635 |
+
tuple(sent_tokenizer(text.lower()))
|
| 636 |
+
for text in examples[OUR_TEXT_FIELD]
|
| 637 |
+
]
|
| 638 |
+
}
|
| 639 |
+
res[LENGTH_FIELD] = [len(tok_text) for tok_text in res[TOKENIZED_FIELD]]
|
| 640 |
+
return res
|
| 641 |
+
|
| 642 |
+
tokenized_dset = self.text_dset.map(
|
| 643 |
+
tokenize_batch,
|
| 644 |
+
batched=True,
|
| 645 |
+
# remove_columns=[OUR_TEXT_FIELD], keep around to print
|
| 646 |
+
)
|
| 647 |
+
tokenized_df = pd.DataFrame(tokenized_dset)
|
| 648 |
+
return tokenized_df
|
| 649 |
+
|
| 650 |
+
def set_label_field(self, label_field="label"):
|
| 651 |
+
"""
|
| 652 |
+
Setter for label_field. Used in the CLI when a user asks for information
|
| 653 |
+
about labels, but does not specify the field;
|
| 654 |
+
'label' is assumed as a default.
|
| 655 |
+
"""
|
| 656 |
+
self.label_field = label_field
|
| 657 |
+
|
| 658 |
+
def load_or_prepare_labels(self, save=True):
|
| 659 |
+
# TODO: This is in a transitory state for creating fig cache.
|
| 660 |
+
# Clean up to be caching and reading everything correctly.
|
| 661 |
+
"""
|
| 662 |
+
Extracts labels from the Dataset
|
| 663 |
+
:return:
|
| 664 |
+
"""
|
| 665 |
+
# extracted labels
|
| 666 |
+
if len(self.label_field) > 0:
|
| 667 |
+
if self.use_cache and exists(self.fig_labels_json_fid):
|
| 668 |
+
self.fig_labels = read_plotly(self.fig_labels_json_fid)
|
| 669 |
+
elif self.use_cache and exists(self.label_dset_fid):
|
| 670 |
+
# load extracted labels
|
| 671 |
+
self.label_dset = load_from_disk(self.label_dset_fid)
|
| 672 |
+
self.label_df = self.label_dset.to_pandas()
|
| 673 |
+
self.fig_labels = make_fig_labels(
|
| 674 |
+
self.label_df, self.label_names, OUR_LABEL_FIELD
|
| 675 |
+
)
|
| 676 |
+
if save:
|
| 677 |
+
write_plotly(self.fig_labels, self.fig_labels_json_fid)
|
| 678 |
+
else:
|
| 679 |
+
if not self.live:
|
| 680 |
+
self.prepare_labels()
|
| 681 |
+
if save:
|
| 682 |
+
# save extracted label instances
|
| 683 |
+
self.label_dset.save_to_disk(self.label_dset_fid)
|
| 684 |
+
write_plotly(self.fig_labels, self.fig_labels_json_fid)
|
| 685 |
+
|
| 686 |
+
def prepare_labels(self):
|
| 687 |
+
if not self.live:
|
| 688 |
+
self.get_base_dataset()
|
| 689 |
+
self.label_dset = self.dset.map(
|
| 690 |
+
lambda examples: extract_field(
|
| 691 |
+
examples, self.label_field, OUR_LABEL_FIELD
|
| 692 |
+
),
|
| 693 |
+
batched=True,
|
| 694 |
+
remove_columns=list(self.dset.features),
|
| 695 |
+
)
|
| 696 |
+
self.label_df = self.label_dset.to_pandas()
|
| 697 |
+
self.fig_labels = make_fig_labels(
|
| 698 |
+
self.label_df, self.label_names, OUR_LABEL_FIELD
|
| 699 |
+
)
|
| 700 |
+
|
| 701 |
+
def load_or_prepare_npmi(self):
|
| 702 |
+
self.npmi_stats = nPMIStatisticsCacheClass(self, use_cache=self.use_cache)
|
| 703 |
+
self.npmi_stats.load_or_prepare_npmi_terms()
|
| 704 |
+
|
| 705 |
+
def load_or_prepare_zipf(self, save=True):
|
| 706 |
+
# TODO: Current UI only uses the fig, meaning the self.z here is irrelevant
|
| 707 |
+
# when only reading from cache. Either the UI should use it, or it should
|
| 708 |
+
# be removed when reading in cache
|
| 709 |
+
if self.use_cache and exists(self.zipf_fig_fid) and exists(self.zipf_fid):
|
| 710 |
+
with open(self.zipf_fid, "r") as f:
|
| 711 |
+
zipf_dict = json.load(f)
|
| 712 |
+
self.z = Zipf()
|
| 713 |
+
self.z.load(zipf_dict)
|
| 714 |
+
# TODO: Should this be cached?
|
| 715 |
+
self.zipf_counts = self.z.calc_zipf_counts(self.vocab_counts_df)
|
| 716 |
+
self.zipf_fig = read_plotly(self.zipf_fig_fid)
|
| 717 |
+
elif self.use_cache and exists(self.zipf_fid):
|
| 718 |
+
# TODO: Read zipf data so that the vocab is there.
|
| 719 |
+
with open(self.zipf_fid, "r") as f:
|
| 720 |
+
zipf_dict = json.load(f)
|
| 721 |
+
self.z = Zipf()
|
| 722 |
+
self.z.load(zipf_dict)
|
| 723 |
+
self.zipf_fig = make_zipf_fig(self.vocab_counts_df, self.z)
|
| 724 |
+
if save:
|
| 725 |
+
write_plotly(self.zipf_fig, self.zipf_fig_fid)
|
| 726 |
+
else:
|
| 727 |
+
self.z = Zipf(self.vocab_counts_df)
|
| 728 |
+
self.zipf_fig = make_zipf_fig(self.vocab_counts_df, self.z)
|
| 729 |
+
if save:
|
| 730 |
+
write_zipf_data(self.z, self.zipf_fid)
|
| 731 |
+
write_plotly(self.zipf_fig, self.zipf_fig_fid)
|
| 732 |
+
|
| 733 |
+
def _set_idx_col_names(self, input_vocab_df):
|
| 734 |
+
if input_vocab_df.index.name != VOCAB and VOCAB in input_vocab_df.columns:
|
| 735 |
+
input_vocab_df = input_vocab_df.set_index([VOCAB])
|
| 736 |
+
input_vocab_df[VOCAB] = input_vocab_df.index
|
| 737 |
+
return input_vocab_df
|
| 738 |
+
|
| 739 |
+
|
| 740 |
+
class nPMIStatisticsCacheClass:
|
| 741 |
+
""" "Class to interface between the app and the nPMI class
|
| 742 |
+
by calling the nPMI class with the user's selections."""
|
| 743 |
+
|
| 744 |
+
def __init__(self, dataset_stats, use_cache=False):
|
| 745 |
+
self.live = dataset_stats.live
|
| 746 |
+
self.dstats = dataset_stats
|
| 747 |
+
self.pmi_cache_path = pjoin(self.dstats.cache_path, "pmi_files")
|
| 748 |
+
if not isdir(self.pmi_cache_path):
|
| 749 |
+
logs.warning("Creating pmi cache directory %s." % self.pmi_cache_path)
|
| 750 |
+
# We need to preprocess everything.
|
| 751 |
+
mkdir(self.pmi_cache_path)
|
| 752 |
+
self.joint_npmi_df_dict = {}
|
| 753 |
+
# TODO: Users ideally can type in whatever words they want.
|
| 754 |
+
self.termlist = _IDENTITY_TERMS
|
| 755 |
+
# termlist terms that are available more than _MIN_VOCAB_COUNT times
|
| 756 |
+
self.available_terms = _IDENTITY_TERMS
|
| 757 |
+
logs.info(self.termlist)
|
| 758 |
+
self.use_cache = use_cache
|
| 759 |
+
# TODO: Let users specify
|
| 760 |
+
self.open_class_only = True
|
| 761 |
+
self.min_vocab_count = self.dstats.min_vocab_count
|
| 762 |
+
self.subgroup_files = {}
|
| 763 |
+
self.npmi_terms_fid = pjoin(self.dstats.cache_path, "npmi_terms.json")
|
| 764 |
+
|
| 765 |
+
def load_or_prepare_npmi_terms(self):
|
| 766 |
+
"""
|
| 767 |
+
Figures out what identity terms the user can select, based on whether
|
| 768 |
+
they occur more than self.min_vocab_count times
|
| 769 |
+
:return: Identity terms occurring at least self.min_vocab_count times.
|
| 770 |
+
"""
|
| 771 |
+
# TODO: Add the user's ability to select subgroups.
|
| 772 |
+
# TODO: Make min_vocab_count here value selectable by the user.
|
| 773 |
+
if (
|
| 774 |
+
self.use_cache
|
| 775 |
+
and exists(self.npmi_terms_fid)
|
| 776 |
+
and json.load(open(self.npmi_terms_fid))["available terms"] != []
|
| 777 |
+
):
|
| 778 |
+
self.available_terms = json.load(open(self.npmi_terms_fid))["available terms"]
|
| 779 |
+
else:
|
| 780 |
+
if not self.live:
|
| 781 |
+
if self.dstats.vocab_counts_df is None:
|
| 782 |
+
self.dstats.load_or_prepare_vocab()
|
| 783 |
+
|
| 784 |
+
true_false = [
|
| 785 |
+
term in self.dstats.vocab_counts_df.index for term in self.termlist
|
| 786 |
+
]
|
| 787 |
+
word_list_tmp = [x for x, y in zip(self.termlist, true_false) if y]
|
| 788 |
+
true_false_counts = [
|
| 789 |
+
self.dstats.vocab_counts_df.loc[word, CNT] >= self.min_vocab_count
|
| 790 |
+
for word in word_list_tmp
|
| 791 |
+
]
|
| 792 |
+
available_terms = [
|
| 793 |
+
word for word, y in zip(word_list_tmp, true_false_counts) if y
|
| 794 |
+
]
|
| 795 |
+
logs.info(available_terms)
|
| 796 |
+
with open(self.npmi_terms_fid, "w+") as f:
|
| 797 |
+
json.dump({"available terms": available_terms}, f)
|
| 798 |
+
self.available_terms = available_terms
|
| 799 |
+
return self.available_terms
|
| 800 |
+
|
| 801 |
+
def load_or_prepare_joint_npmi(self, subgroup_pair, save=True):
|
| 802 |
+
"""
|
| 803 |
+
Run on-the fly, while the app is already open,
|
| 804 |
+
as it depends on the subgroup terms that the user chooses
|
| 805 |
+
:param subgroup_pair:
|
| 806 |
+
:return:
|
| 807 |
+
"""
|
| 808 |
+
# Canonical ordering for subgroup_list
|
| 809 |
+
subgroup_pair = sorted(subgroup_pair)
|
| 810 |
+
subgroup1 = subgroup_pair[0]
|
| 811 |
+
subgroup2 = subgroup_pair[1]
|
| 812 |
+
subgroups_str = "-".join(subgroup_pair)
|
| 813 |
+
if not isdir(self.pmi_cache_path):
|
| 814 |
+
logs.warning("Creating cache")
|
| 815 |
+
# We need to preprocess everything.
|
| 816 |
+
# This should eventually all go into a prepare_dataset CLI
|
| 817 |
+
mkdir(self.pmi_cache_path)
|
| 818 |
+
joint_npmi_fid = pjoin(self.pmi_cache_path, subgroups_str + "_npmi.csv")
|
| 819 |
+
subgroup_files = define_subgroup_files(subgroup_pair, self.pmi_cache_path)
|
| 820 |
+
# Defines the filenames for the cache files from the selected subgroups.
|
| 821 |
+
# Get as much precomputed data as we can.
|
| 822 |
+
if self.use_cache and exists(joint_npmi_fid):
|
| 823 |
+
# When everything is already computed for the selected subgroups.
|
| 824 |
+
logs.info("Loading cached joint npmi")
|
| 825 |
+
joint_npmi_df = self.load_joint_npmi_df(joint_npmi_fid)
|
| 826 |
+
npmi_display_cols = ['npmi-bias', subgroup1 + '-npmi', subgroup2 + '-npmi', subgroup1 + '-count', subgroup2 + '-count']
|
| 827 |
+
joint_npmi_df = joint_npmi_df[npmi_display_cols]
|
| 828 |
+
# When maybe some things have been computed for the selected subgroups.
|
| 829 |
+
else:
|
| 830 |
+
if not self.live:
|
| 831 |
+
logs.info("Preparing new joint npmi")
|
| 832 |
+
joint_npmi_df, subgroup_dict = self.prepare_joint_npmi_df(
|
| 833 |
+
subgroup_pair, subgroup_files
|
| 834 |
+
)
|
| 835 |
+
if save:
|
| 836 |
+
if joint_npmi_df is not None:
|
| 837 |
+
# Cache new results
|
| 838 |
+
logs.info("Writing out.")
|
| 839 |
+
for subgroup in subgroup_pair:
|
| 840 |
+
write_subgroup_npmi_data(subgroup, subgroup_dict, subgroup_files)
|
| 841 |
+
with open(joint_npmi_fid, "w+") as f:
|
| 842 |
+
joint_npmi_df.to_csv(f)
|
| 843 |
+
else:
|
| 844 |
+
joint_npmi_df = pd.DataFrame()
|
| 845 |
+
logs.info("The joint npmi df is")
|
| 846 |
+
logs.info(joint_npmi_df)
|
| 847 |
+
return joint_npmi_df
|
| 848 |
+
|
| 849 |
+
def load_joint_npmi_df(self, joint_npmi_fid):
|
| 850 |
+
"""
|
| 851 |
+
Reads in a saved dataframe with all of the paired results.
|
| 852 |
+
:param joint_npmi_fid:
|
| 853 |
+
:return: paired results
|
| 854 |
+
"""
|
| 855 |
+
with open(joint_npmi_fid, "rb") as f:
|
| 856 |
+
joint_npmi_df = pd.read_csv(f)
|
| 857 |
+
joint_npmi_df = self._set_idx_cols_from_cache(joint_npmi_df)
|
| 858 |
+
return joint_npmi_df.dropna()
|
| 859 |
+
|
| 860 |
+
def prepare_joint_npmi_df(self, subgroup_pair, subgroup_files):
|
| 861 |
+
"""
|
| 862 |
+
Computs the npmi bias based on the given subgroups.
|
| 863 |
+
Handles cases where some of the selected subgroups have cached nPMI
|
| 864 |
+
computations, but other's don't, computing everything afresh if there
|
| 865 |
+
are not cached files.
|
| 866 |
+
:param subgroup_pair:
|
| 867 |
+
:return: Dataframe with nPMI for the words, nPMI bias between the words.
|
| 868 |
+
"""
|
| 869 |
+
subgroup_dict = {}
|
| 870 |
+
# When npmi is computed for some (but not all) of subgroup_list
|
| 871 |
+
for subgroup in subgroup_pair:
|
| 872 |
+
logs.info("Load or failing...")
|
| 873 |
+
# When subgroup npmi has been computed in a prior session.
|
| 874 |
+
cached_results = self.load_or_fail_cached_npmi_scores(
|
| 875 |
+
subgroup, subgroup_files[subgroup]
|
| 876 |
+
)
|
| 877 |
+
# If the function did not return False and we did find it, use.
|
| 878 |
+
if cached_results:
|
| 879 |
+
# FYI: subgroup_cooc_df, subgroup_pmi_df, subgroup_npmi_df = cached_results
|
| 880 |
+
# Holds the previous sessions' data for use in this session.
|
| 881 |
+
subgroup_dict[subgroup] = cached_results
|
| 882 |
+
logs.info("Calculating for subgroup list")
|
| 883 |
+
joint_npmi_df, subgroup_dict = self.do_npmi(subgroup_pair, subgroup_dict)
|
| 884 |
+
return joint_npmi_df, subgroup_dict
|
| 885 |
+
|
| 886 |
+
# TODO: Update pairwise assumption
|
| 887 |
+
def do_npmi(self, subgroup_pair, subgroup_dict):
|
| 888 |
+
"""
|
| 889 |
+
Calculates nPMI for given identity terms and the nPMI bias between.
|
| 890 |
+
:param subgroup_pair: List of identity terms to calculate the bias for
|
| 891 |
+
:return: Subset of data for the UI
|
| 892 |
+
:return: Selected identity term's co-occurrence counts with
|
| 893 |
+
other words, pmi per word, and nPMI per word.
|
| 894 |
+
"""
|
| 895 |
+
no_results = False
|
| 896 |
+
logs.info("Initializing npmi class")
|
| 897 |
+
npmi_obj = self.set_npmi_obj()
|
| 898 |
+
# Canonical ordering used
|
| 899 |
+
subgroup_pair = tuple(sorted(subgroup_pair))
|
| 900 |
+
# Calculating nPMI statistics
|
| 901 |
+
for subgroup in subgroup_pair:
|
| 902 |
+
# If the subgroup data is already computed, grab it.
|
| 903 |
+
# TODO: Should we set idx and column names similarly to
|
| 904 |
+
# how we set them for cached files?
|
| 905 |
+
if subgroup not in subgroup_dict:
|
| 906 |
+
logs.info("Calculating statistics for %s" % subgroup)
|
| 907 |
+
vocab_cooc_df, pmi_df, npmi_df = npmi_obj.calc_metrics(subgroup)
|
| 908 |
+
if vocab_cooc_df is None:
|
| 909 |
+
no_results = True
|
| 910 |
+
else:
|
| 911 |
+
# Store the nPMI information for the current subgroups
|
| 912 |
+
subgroup_dict[subgroup] = (vocab_cooc_df, pmi_df, npmi_df)
|
| 913 |
+
if no_results:
|
| 914 |
+
logs.warning("Couldn't grap the npmi files -- Under construction")
|
| 915 |
+
return None, None
|
| 916 |
+
else:
|
| 917 |
+
# Pair the subgroups together, indexed by all words that
|
| 918 |
+
# co-occur between them.
|
| 919 |
+
logs.info("Computing pairwise npmi bias")
|
| 920 |
+
paired_results = npmi_obj.calc_paired_metrics(subgroup_pair, subgroup_dict)
|
| 921 |
+
UI_results = make_npmi_fig(paired_results, subgroup_pair)
|
| 922 |
+
return UI_results.dropna(), subgroup_dict
|
| 923 |
+
|
| 924 |
+
def set_npmi_obj(self):
|
| 925 |
+
"""
|
| 926 |
+
Initializes the nPMI class with the given words and tokenized sentences.
|
| 927 |
+
:return:
|
| 928 |
+
"""
|
| 929 |
+
npmi_obj = nPMI(self.dstats.vocab_counts_df, self.dstats.tokenized_df)
|
| 930 |
+
return npmi_obj
|
| 931 |
+
|
| 932 |
+
def load_or_fail_cached_npmi_scores(self, subgroup, subgroup_fids):
|
| 933 |
+
"""
|
| 934 |
+
Reads cached scores from the specified subgroup files
|
| 935 |
+
:param subgroup: string of the selected identity term
|
| 936 |
+
:return:
|
| 937 |
+
"""
|
| 938 |
+
# TODO: Ordering of npmi, pmi, vocab triple should be consistent
|
| 939 |
+
subgroup_npmi_fid, subgroup_pmi_fid, subgroup_cooc_fid = subgroup_fids
|
| 940 |
+
if (
|
| 941 |
+
exists(subgroup_npmi_fid)
|
| 942 |
+
and exists(subgroup_pmi_fid)
|
| 943 |
+
and exists(subgroup_cooc_fid)
|
| 944 |
+
):
|
| 945 |
+
logs.info("Reading in pmi data....")
|
| 946 |
+
with open(subgroup_cooc_fid, "rb") as f:
|
| 947 |
+
subgroup_cooc_df = pd.read_csv(f)
|
| 948 |
+
logs.info("pmi")
|
| 949 |
+
with open(subgroup_pmi_fid, "rb") as f:
|
| 950 |
+
subgroup_pmi_df = pd.read_csv(f)
|
| 951 |
+
logs.info("npmi")
|
| 952 |
+
with open(subgroup_npmi_fid, "rb") as f:
|
| 953 |
+
subgroup_npmi_df = pd.read_csv(f)
|
| 954 |
+
subgroup_cooc_df = self._set_idx_cols_from_cache(
|
| 955 |
+
subgroup_cooc_df, subgroup, "count"
|
| 956 |
+
)
|
| 957 |
+
subgroup_pmi_df = self._set_idx_cols_from_cache(
|
| 958 |
+
subgroup_pmi_df, subgroup, "pmi"
|
| 959 |
+
)
|
| 960 |
+
subgroup_npmi_df = self._set_idx_cols_from_cache(
|
| 961 |
+
subgroup_npmi_df, subgroup, "npmi"
|
| 962 |
+
)
|
| 963 |
+
return subgroup_cooc_df, subgroup_pmi_df, subgroup_npmi_df
|
| 964 |
+
return False
|
| 965 |
+
|
| 966 |
+
def _set_idx_cols_from_cache(self, csv_df, subgroup=None, calc_str=None):
|
| 967 |
+
"""
|
| 968 |
+
Helps make sure all of the read-in files can be accessed within code
|
| 969 |
+
via standardized indices and column names.
|
| 970 |
+
:param csv_df:
|
| 971 |
+
:param subgroup:
|
| 972 |
+
:param calc_str:
|
| 973 |
+
:return:
|
| 974 |
+
"""
|
| 975 |
+
# The csv saves with this column instead of the index, so that's weird.
|
| 976 |
+
if "Unnamed: 0" in csv_df.columns:
|
| 977 |
+
csv_df = csv_df.set_index("Unnamed: 0")
|
| 978 |
+
csv_df.index.name = WORD
|
| 979 |
+
elif WORD in csv_df.columns:
|
| 980 |
+
csv_df = csv_df.set_index(WORD)
|
| 981 |
+
csv_df.index.name = WORD
|
| 982 |
+
elif VOCAB in csv_df.columns:
|
| 983 |
+
csv_df = csv_df.set_index(VOCAB)
|
| 984 |
+
csv_df.index.name = WORD
|
| 985 |
+
if subgroup and calc_str:
|
| 986 |
+
csv_df.columns = [subgroup + "-" + calc_str]
|
| 987 |
+
elif subgroup:
|
| 988 |
+
csv_df.columns = [subgroup]
|
| 989 |
+
elif calc_str:
|
| 990 |
+
csv_df.columns = [calc_str]
|
| 991 |
+
return csv_df
|
| 992 |
+
|
| 993 |
+
def get_available_terms(self):
|
| 994 |
+
return self.load_or_prepare_npmi_terms()
|
| 995 |
+
|
| 996 |
+
def dummy(doc):
|
| 997 |
+
return doc
|
| 998 |
+
|
| 999 |
+
def count_vocab_frequencies(tokenized_df):
|
| 1000 |
+
"""
|
| 1001 |
+
Based on an input pandas DataFrame with a 'text' column,
|
| 1002 |
+
this function will count the occurrences of all words.
|
| 1003 |
+
:return: [num_words x num_sentences] DataFrame with the rows corresponding to the
|
| 1004 |
+
different vocabulary words and the column to the presence (0 or 1) of that word.
|
| 1005 |
+
"""
|
| 1006 |
+
|
| 1007 |
+
cvec = CountVectorizer(
|
| 1008 |
+
tokenizer=dummy,
|
| 1009 |
+
preprocessor=dummy,
|
| 1010 |
+
)
|
| 1011 |
+
# We do this to calculate per-word statistics
|
| 1012 |
+
# Fast calculation of single word counts
|
| 1013 |
+
logs.info("Fitting dummy tokenization to make matrix using the previous tokenization")
|
| 1014 |
+
cvec.fit(tokenized_df[TOKENIZED_FIELD])
|
| 1015 |
+
document_matrix = cvec.transform(tokenized_df[TOKENIZED_FIELD])
|
| 1016 |
+
batches = np.linspace(0, tokenized_df.shape[0], _NUM_VOCAB_BATCHES).astype(int)
|
| 1017 |
+
i = 0
|
| 1018 |
+
tf = []
|
| 1019 |
+
while i < len(batches) - 1:
|
| 1020 |
+
logs.info("%s of %s vocab batches" % (str(i), str(len(batches))))
|
| 1021 |
+
batch_result = np.sum(
|
| 1022 |
+
document_matrix[batches[i] : batches[i + 1]].toarray(), axis=0
|
| 1023 |
+
)
|
| 1024 |
+
tf.append(batch_result)
|
| 1025 |
+
i += 1
|
| 1026 |
+
word_count_df = pd.DataFrame(
|
| 1027 |
+
[np.sum(tf, axis=0)], columns=cvec.get_feature_names()
|
| 1028 |
+
).transpose()
|
| 1029 |
+
# Now organize everything into the dataframes
|
| 1030 |
+
word_count_df.columns = [CNT]
|
| 1031 |
+
word_count_df.index.name = WORD
|
| 1032 |
+
return word_count_df
|
| 1033 |
+
|
| 1034 |
+
def calc_p_word(word_count_df):
|
| 1035 |
+
# p(word)
|
| 1036 |
+
word_count_df[PROP] = word_count_df[CNT] / float(sum(word_count_df[CNT]))
|
| 1037 |
+
vocab_counts_df = pd.DataFrame(word_count_df.sort_values(by=CNT, ascending=False))
|
| 1038 |
+
vocab_counts_df[VOCAB] = vocab_counts_df.index
|
| 1039 |
+
return vocab_counts_df
|
| 1040 |
+
|
| 1041 |
+
|
| 1042 |
+
def filter_vocab(vocab_counts_df):
|
| 1043 |
+
# TODO: Add warnings (which words are missing) to log file?
|
| 1044 |
+
filtered_vocab_counts_df = vocab_counts_df.drop(_CLOSED_CLASS,
|
| 1045 |
+
errors="ignore")
|
| 1046 |
+
filtered_count = filtered_vocab_counts_df[CNT]
|
| 1047 |
+
filtered_count_denom = float(sum(filtered_vocab_counts_df[CNT]))
|
| 1048 |
+
filtered_vocab_counts_df[PROP] = filtered_count / filtered_count_denom
|
| 1049 |
+
return filtered_vocab_counts_df
|
| 1050 |
+
|
| 1051 |
+
|
| 1052 |
+
## Figures ##
|
| 1053 |
+
|
| 1054 |
+
def write_plotly(fig, fid):
|
| 1055 |
+
write_json(plotly.io.to_json(fig), fid)
|
| 1056 |
+
|
| 1057 |
+
def read_plotly(fid):
|
| 1058 |
+
fig = plotly.io.from_json(json.load(open(fid, encoding="utf-8")))
|
| 1059 |
+
return fig
|
| 1060 |
+
|
| 1061 |
+
def make_fig_lengths(tokenized_df, length_field):
|
| 1062 |
+
fig_tok_length = px.histogram(
|
| 1063 |
+
tokenized_df, x=length_field, marginal="rug", hover_data=[length_field]
|
| 1064 |
+
)
|
| 1065 |
+
return fig_tok_length
|
| 1066 |
+
|
| 1067 |
+
def make_fig_labels(label_df, label_names, label_field):
|
| 1068 |
+
labels = label_df[label_field].unique()
|
| 1069 |
+
label_sums = [len(label_df[label_df[label_field] == label]) for label in labels]
|
| 1070 |
+
fig_labels = px.pie(label_df, values=label_sums, names=label_names)
|
| 1071 |
+
return fig_labels
|
| 1072 |
+
|
| 1073 |
+
|
| 1074 |
+
def make_zipf_fig_ranked_word_list(vocab_df, unique_counts, unique_ranks):
|
| 1075 |
+
ranked_words = {}
|
| 1076 |
+
for count, rank in zip(unique_counts, unique_ranks):
|
| 1077 |
+
vocab_df[vocab_df[CNT] == count]["rank"] = rank
|
| 1078 |
+
ranked_words[rank] = ",".join(
|
| 1079 |
+
vocab_df[vocab_df[CNT] == count].index.astype(str)
|
| 1080 |
+
) # Use the hovertext kw argument for hover text
|
| 1081 |
+
ranked_words_list = [wrds for rank, wrds in sorted(ranked_words.items())]
|
| 1082 |
+
return ranked_words_list
|
| 1083 |
+
|
| 1084 |
+
|
| 1085 |
+
def make_npmi_fig(paired_results, subgroup_pair):
|
| 1086 |
+
subgroup1, subgroup2 = subgroup_pair
|
| 1087 |
+
UI_results = pd.DataFrame()
|
| 1088 |
+
if "npmi-bias" in paired_results:
|
| 1089 |
+
UI_results["npmi-bias"] = paired_results["npmi-bias"].astype(float)
|
| 1090 |
+
UI_results[subgroup1 + "-npmi"] = paired_results["npmi"][
|
| 1091 |
+
subgroup1 + "-npmi"
|
| 1092 |
+
].astype(float)
|
| 1093 |
+
UI_results[subgroup1 + "-count"] = paired_results["count"][
|
| 1094 |
+
subgroup1 + "-count"
|
| 1095 |
+
].astype(int)
|
| 1096 |
+
if subgroup1 != subgroup2:
|
| 1097 |
+
UI_results[subgroup2 + "-npmi"] = paired_results["npmi"][
|
| 1098 |
+
subgroup2 + "-npmi"
|
| 1099 |
+
].astype(float)
|
| 1100 |
+
UI_results[subgroup2 + "-count"] = paired_results["count"][
|
| 1101 |
+
subgroup2 + "-count"
|
| 1102 |
+
].astype(int)
|
| 1103 |
+
return UI_results.sort_values(by="npmi-bias", ascending=True)
|
| 1104 |
+
|
| 1105 |
+
|
| 1106 |
+
def make_zipf_fig(vocab_counts_df, z):
|
| 1107 |
+
zipf_counts = z.calc_zipf_counts(vocab_counts_df)
|
| 1108 |
+
unique_counts = z.uniq_counts
|
| 1109 |
+
unique_ranks = z.uniq_ranks
|
| 1110 |
+
ranked_words_list = make_zipf_fig_ranked_word_list(
|
| 1111 |
+
vocab_counts_df, unique_counts, unique_ranks
|
| 1112 |
+
)
|
| 1113 |
+
zmin = z.get_xmin()
|
| 1114 |
+
logs.info("zipf counts is")
|
| 1115 |
+
logs.info(zipf_counts)
|
| 1116 |
+
layout = go.Layout(xaxis=dict(range=[0, 100]))
|
| 1117 |
+
fig = go.Figure(
|
| 1118 |
+
data=[
|
| 1119 |
+
go.Bar(
|
| 1120 |
+
x=z.uniq_ranks,
|
| 1121 |
+
y=z.uniq_counts,
|
| 1122 |
+
hovertext=ranked_words_list,
|
| 1123 |
+
name="Word Rank Frequency",
|
| 1124 |
+
)
|
| 1125 |
+
],
|
| 1126 |
+
layout=layout,
|
| 1127 |
+
)
|
| 1128 |
+
fig.add_trace(
|
| 1129 |
+
go.Scatter(
|
| 1130 |
+
x=z.uniq_ranks[zmin : len(z.uniq_ranks)],
|
| 1131 |
+
y=zipf_counts[zmin : len(z.uniq_ranks)],
|
| 1132 |
+
hovertext=ranked_words_list[zmin : len(z.uniq_ranks)],
|
| 1133 |
+
line=go.scatter.Line(color="crimson", width=3),
|
| 1134 |
+
name="Zipf Predicted Frequency",
|
| 1135 |
+
)
|
| 1136 |
+
)
|
| 1137 |
+
# Customize aspect
|
| 1138 |
+
# fig.update_traces(marker_color='limegreen',
|
| 1139 |
+
# marker_line_width=1.5, opacity=0.6)
|
| 1140 |
+
fig.update_layout(title_text="Word Counts, Observed and Predicted by Zipf")
|
| 1141 |
+
fig.update_layout(xaxis_title="Word Rank")
|
| 1142 |
+
fig.update_layout(yaxis_title="Frequency")
|
| 1143 |
+
fig.update_layout(legend=dict(yanchor="top", y=0.99, xanchor="left", x=0.10))
|
| 1144 |
+
return fig
|
| 1145 |
+
|
| 1146 |
+
|
| 1147 |
+
def make_tree_plot(node_list, text_dset):
|
| 1148 |
+
nid_map = dict([(node["nid"], nid) for nid, node in enumerate(node_list)])
|
| 1149 |
+
|
| 1150 |
+
for nid, node in enumerate(node_list):
|
| 1151 |
+
node["label"] = node.get(
|
| 1152 |
+
"label",
|
| 1153 |
+
f"{nid:2d} - {node['weight']:5d} items <br>"
|
| 1154 |
+
+ "<br>".join(
|
| 1155 |
+
[
|
| 1156 |
+
"> " + txt[:64] + ("..." if len(txt) >= 63 else "")
|
| 1157 |
+
for txt in list(
|
| 1158 |
+
set(text_dset.select(node["example_ids"])[OUR_TEXT_FIELD])
|
| 1159 |
+
)[:5]
|
| 1160 |
+
]
|
| 1161 |
+
),
|
| 1162 |
+
)
|
| 1163 |
+
|
| 1164 |
+
# make plot nodes
|
| 1165 |
+
# TODO: something more efficient than set to remove duplicates
|
| 1166 |
+
labels = [node["label"] for node in node_list]
|
| 1167 |
+
|
| 1168 |
+
root = node_list[0]
|
| 1169 |
+
root["X"] = 0
|
| 1170 |
+
root["Y"] = 0
|
| 1171 |
+
|
| 1172 |
+
def rec_make_coordinates(node):
|
| 1173 |
+
total_weight = 0
|
| 1174 |
+
add_weight = len(node["example_ids"]) - sum(
|
| 1175 |
+
[child["weight"] for child in node["children"]]
|
| 1176 |
+
)
|
| 1177 |
+
for child in node["children"]:
|
| 1178 |
+
child["X"] = node["X"] + total_weight
|
| 1179 |
+
child["Y"] = node["Y"] - 1
|
| 1180 |
+
total_weight += child["weight"] + add_weight / len(node["children"])
|
| 1181 |
+
rec_make_coordinates(child)
|
| 1182 |
+
|
| 1183 |
+
rec_make_coordinates(root)
|
| 1184 |
+
|
| 1185 |
+
E = [] # list of edges
|
| 1186 |
+
Xn = []
|
| 1187 |
+
Yn = []
|
| 1188 |
+
Xe = []
|
| 1189 |
+
Ye = []
|
| 1190 |
+
for nid, node in enumerate(node_list):
|
| 1191 |
+
Xn += [node["X"]]
|
| 1192 |
+
Yn += [node["Y"]]
|
| 1193 |
+
for child in node["children"]:
|
| 1194 |
+
E += [(nid, nid_map[child["nid"]])]
|
| 1195 |
+
Xe += [node["X"], child["X"], None]
|
| 1196 |
+
Ye += [node["Y"], child["Y"], None]
|
| 1197 |
+
|
| 1198 |
+
# make figure
|
| 1199 |
+
fig = go.Figure()
|
| 1200 |
+
fig.add_trace(
|
| 1201 |
+
go.Scatter(
|
| 1202 |
+
x=Xe,
|
| 1203 |
+
y=Ye,
|
| 1204 |
+
mode="lines",
|
| 1205 |
+
line=dict(color="rgb(210,210,210)", width=1),
|
| 1206 |
+
hoverinfo="none",
|
| 1207 |
+
)
|
| 1208 |
+
)
|
| 1209 |
+
fig.add_trace(
|
| 1210 |
+
go.Scatter(
|
| 1211 |
+
x=Xn,
|
| 1212 |
+
y=Yn,
|
| 1213 |
+
mode="markers",
|
| 1214 |
+
name="nodes",
|
| 1215 |
+
marker=dict(
|
| 1216 |
+
symbol="circle-dot",
|
| 1217 |
+
size=18,
|
| 1218 |
+
color="#6175c1",
|
| 1219 |
+
line=dict(color="rgb(50,50,50)", width=1)
|
| 1220 |
+
# '#DB4551',
|
| 1221 |
+
),
|
| 1222 |
+
text=labels,
|
| 1223 |
+
hoverinfo="text",
|
| 1224 |
+
opacity=0.8,
|
| 1225 |
+
)
|
| 1226 |
+
)
|
| 1227 |
+
return fig
|
| 1228 |
+
|
| 1229 |
+
|
| 1230 |
+
## Input/Output ###
|
| 1231 |
+
|
| 1232 |
+
|
| 1233 |
+
def define_subgroup_files(subgroup_list, pmi_cache_path):
|
| 1234 |
+
"""
|
| 1235 |
+
Sets the file ids for the input identity terms
|
| 1236 |
+
:param subgroup_list: List of identity terms
|
| 1237 |
+
:return:
|
| 1238 |
+
"""
|
| 1239 |
+
subgroup_files = {}
|
| 1240 |
+
for subgroup in subgroup_list:
|
| 1241 |
+
# TODO: Should the pmi, npmi, and count just be one file?
|
| 1242 |
+
subgroup_npmi_fid = pjoin(pmi_cache_path, subgroup + "_npmi.csv")
|
| 1243 |
+
subgroup_pmi_fid = pjoin(pmi_cache_path, subgroup + "_pmi.csv")
|
| 1244 |
+
subgroup_cooc_fid = pjoin(pmi_cache_path, subgroup + "_vocab_cooc.csv")
|
| 1245 |
+
subgroup_files[subgroup] = (
|
| 1246 |
+
subgroup_npmi_fid,
|
| 1247 |
+
subgroup_pmi_fid,
|
| 1248 |
+
subgroup_cooc_fid,
|
| 1249 |
+
)
|
| 1250 |
+
return subgroup_files
|
| 1251 |
+
|
| 1252 |
+
|
| 1253 |
+
## Input/Output ##
|
| 1254 |
+
|
| 1255 |
+
|
| 1256 |
+
def intersect_dfs(df_dict):
|
| 1257 |
+
started = 0
|
| 1258 |
+
new_df = None
|
| 1259 |
+
for key, df in df_dict.items():
|
| 1260 |
+
if df is None:
|
| 1261 |
+
continue
|
| 1262 |
+
for key2, df2 in df_dict.items():
|
| 1263 |
+
if df2 is None:
|
| 1264 |
+
continue
|
| 1265 |
+
if key == key2:
|
| 1266 |
+
continue
|
| 1267 |
+
if started:
|
| 1268 |
+
new_df = new_df.join(df2, how="inner", lsuffix="1", rsuffix="2")
|
| 1269 |
+
else:
|
| 1270 |
+
new_df = df.join(df2, how="inner", lsuffix="1", rsuffix="2")
|
| 1271 |
+
started = 1
|
| 1272 |
+
return new_df.copy()
|
| 1273 |
+
|
| 1274 |
+
|
| 1275 |
+
def write_df(df, df_fid):
|
| 1276 |
+
feather.write_feather(df, df_fid)
|
| 1277 |
+
|
| 1278 |
+
|
| 1279 |
+
def write_json(json_dict, json_fid):
|
| 1280 |
+
with open(json_fid, "w", encoding="utf-8") as f:
|
| 1281 |
+
json.dump(json_dict, f)
|
| 1282 |
+
|
| 1283 |
+
def write_subgroup_npmi_data(subgroup, subgroup_dict, subgroup_files):
|
| 1284 |
+
"""
|
| 1285 |
+
Saves the calculated nPMI statistics to their output files.
|
| 1286 |
+
Includes the npmi scores for each identity term, the pmi scores, and the
|
| 1287 |
+
co-occurrence counts of the identity term with all the other words
|
| 1288 |
+
:param subgroup: Identity term
|
| 1289 |
+
:return:
|
| 1290 |
+
"""
|
| 1291 |
+
subgroup_fids = subgroup_files[subgroup]
|
| 1292 |
+
subgroup_npmi_fid, subgroup_pmi_fid, subgroup_cooc_fid = subgroup_fids
|
| 1293 |
+
subgroup_dfs = subgroup_dict[subgroup]
|
| 1294 |
+
subgroup_cooc_df, subgroup_pmi_df, subgroup_npmi_df = subgroup_dfs
|
| 1295 |
+
with open(subgroup_npmi_fid, "w+") as f:
|
| 1296 |
+
subgroup_npmi_df.to_csv(f)
|
| 1297 |
+
with open(subgroup_pmi_fid, "w+") as f:
|
| 1298 |
+
subgroup_pmi_df.to_csv(f)
|
| 1299 |
+
with open(subgroup_cooc_fid, "w+") as f:
|
| 1300 |
+
subgroup_cooc_df.to_csv(f)
|
| 1301 |
+
|
| 1302 |
+
def write_zipf_data(z, zipf_fid):
|
| 1303 |
+
zipf_dict = {}
|
| 1304 |
+
zipf_dict["xmin"] = int(z.xmin)
|
| 1305 |
+
zipf_dict["xmax"] = int(z.xmax)
|
| 1306 |
+
zipf_dict["alpha"] = float(z.alpha)
|
| 1307 |
+
zipf_dict["ks_distance"] = float(z.distance)
|
| 1308 |
+
zipf_dict["p-value"] = float(z.ks_test.pvalue)
|
| 1309 |
+
zipf_dict["uniq_counts"] = [int(count) for count in z.uniq_counts]
|
| 1310 |
+
zipf_dict["uniq_ranks"] = [int(rank) for rank in z.uniq_ranks]
|
| 1311 |
+
with open(zipf_fid, "w+", encoding="utf-8") as f:
|
| 1312 |
+
json.dump(zipf_dict, f)
|
| 1313 |
+
|