Spaces:
Runtime error
Runtime error
File size: 9,853 Bytes
c670717 97c4991 c670717 97c4991 899d9c6 0ff4ef8 97c4991 b924465 97c4991 899d9c6 8c7e6f1 97c4991 b61328c 97c4991 573aa88 b61328c 60216ec 573aa88 97c4991 b61328c 899d9c6 9ab40fd dcf3974 5f94ff7 97c4991 5f94ff7 f977d49 8c7e6f1 b61328c 631cc27 97c4991 573aa88 97c4991 8c7e6f1 97c4991 f977d49 7716903 51a1671 f977d49 60216ec 8c7e6f1 dd66861 c670717 97c4991 c670717 dd66861 d47c403 e8b5344 b924465 c670717 b924465 97c4991 b924465 c670717 b924465 97c4991 b924465 c670717 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import { AutoTokenizer, PreTrainedTokenizer } from "@huggingface/transformers";
import {
isCustomModel,
type Conversation,
type ConversationMessage,
type CustomModel,
type Model,
} from "$lib/types.js";
import type { ChatCompletionInputMessage, InferenceSnippet } from "@huggingface/tasks";
import { type ChatCompletionOutputMessage } from "@huggingface/tasks";
import { token } from "$lib/state/token.svelte";
import { HfInference, snippets, type InferenceProvider } from "@huggingface/inference";
import OpenAI from "openai";
type ChatCompletionInputMessageChunk =
NonNullable<ChatCompletionInputMessage["content"]> extends string | (infer U)[] ? U : never;
function parseMessage(message: ConversationMessage): ChatCompletionInputMessage {
if (!message.images) return message;
return {
...message,
content: [
{
type: "text",
text: message.content ?? "",
},
...message.images.map(img => {
return {
type: "image_url",
image_url: { url: img },
} satisfies ChatCompletionInputMessageChunk;
}),
],
};
}
type HFCompletionMetadata = {
type: "huggingface";
client: HfInference;
args: Parameters<HfInference["chatCompletion"]>[0];
};
type OpenAICompletionMetadata = {
type: "openai";
client: OpenAI;
args: OpenAI.ChatCompletionCreateParams;
};
type CompletionMetadata = HFCompletionMetadata | OpenAICompletionMetadata;
function parseOpenAIMessages(
messages: ConversationMessage[],
systemMessage?: ConversationMessage
): OpenAI.ChatCompletionMessageParam[] {
const parsedMessages: OpenAI.ChatCompletionMessageParam[] = [];
if (systemMessage?.content) {
parsedMessages.push({
role: "system",
content: systemMessage.content,
});
}
return [
...parsedMessages,
...messages.map(msg => ({
role: msg.role === "assistant" ? ("assistant" as const) : ("user" as const),
content: msg.content || "",
})),
];
}
function getCompletionMetadata(conversation: Conversation): CompletionMetadata {
const { model, systemMessage } = conversation;
// Handle OpenAI-compatible models
if (isCustomModel(model)) {
const openai = new OpenAI({
apiKey: model.accessToken,
baseURL: model.endpointUrl,
dangerouslyAllowBrowser: true,
});
return {
type: "openai",
client: openai,
args: {
messages: parseOpenAIMessages(conversation.messages, systemMessage),
model: model.id,
},
};
}
// Handle HuggingFace models
const messages = [
...(isSystemPromptSupported(model) && systemMessage.content?.length ? [systemMessage] : []),
...conversation.messages,
];
return {
type: "huggingface",
client: new HfInference(token.value),
args: {
model: model.id,
messages: messages.map(parseMessage),
provider: conversation.provider,
...conversation.config,
},
};
}
export async function handleStreamingResponse(
conversation: Conversation,
onChunk: (content: string) => void,
abortController: AbortController
): Promise<void> {
const metadata = getCompletionMetadata(conversation);
if (metadata.type === "openai") {
const stream = await metadata.client.chat.completions.create({
...metadata.args,
stream: true,
} as OpenAI.ChatCompletionCreateParamsStreaming);
let out = "";
for await (const chunk of stream) {
if (chunk.choices[0]?.delta?.content) {
out += chunk.choices[0].delta.content;
onChunk(out);
}
}
return;
}
// HuggingFace streaming
let out = "";
for await (const chunk of metadata.client.chatCompletionStream(metadata.args, { signal: abortController.signal })) {
if (chunk.choices && chunk.choices.length > 0 && chunk.choices[0]?.delta?.content) {
out += chunk.choices[0].delta.content;
onChunk(out);
}
}
}
export async function handleNonStreamingResponse(
conversation: Conversation
): Promise<{ message: ChatCompletionOutputMessage; completion_tokens: number }> {
const metadata = getCompletionMetadata(conversation);
if (metadata.type === "openai") {
const response = await metadata.client.chat.completions.create({
...metadata.args,
stream: false,
} as OpenAI.ChatCompletionCreateParamsNonStreaming);
if (response.choices && response.choices.length > 0 && response.choices[0]?.message) {
return {
message: {
role: "assistant",
content: response.choices[0].message.content || "",
},
completion_tokens: response.usage?.completion_tokens || 0,
};
}
throw new Error("No response from the model");
}
// HuggingFace non-streaming
const response = await metadata.client.chatCompletion(metadata.args);
if (response.choices && response.choices.length > 0) {
const { message } = response.choices[0]!;
const { completion_tokens } = response.usage;
return { message, completion_tokens };
}
throw new Error("No response from the model");
}
export function isSystemPromptSupported(model: Model | CustomModel) {
if (isCustomModel(model)) return true; // OpenAI-compatible models support system messages
return model?.config.tokenizer_config?.chat_template?.includes("system");
}
export const defaultSystemMessage: { [key: string]: string } = {
"Qwen/QwQ-32B-Preview":
"You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step.",
} as const;
export const customMaxTokens: { [key: string]: number } = {
"01-ai/Yi-1.5-34B-Chat": 2048,
"HuggingFaceM4/idefics-9b-instruct": 2048,
"deepseek-ai/DeepSeek-Coder-V2-Instruct": 16384,
"bigcode/starcoder": 8192,
"bigcode/starcoderplus": 8192,
"HuggingFaceH4/starcoderbase-finetuned-oasst1": 8192,
"google/gemma-7b": 8192,
"google/gemma-1.1-7b-it": 8192,
"google/gemma-2b": 8192,
"google/gemma-1.1-2b-it": 8192,
"google/gemma-2-27b-it": 8192,
"google/gemma-2-9b-it": 4096,
"google/gemma-2-2b-it": 8192,
"tiiuae/falcon-7b": 8192,
"tiiuae/falcon-7b-instruct": 8192,
"timdettmers/guanaco-33b-merged": 2048,
"mistralai/Mixtral-8x7B-Instruct-v0.1": 32768,
"Qwen/Qwen2.5-72B-Instruct": 32768,
"Qwen/Qwen2.5-Coder-32B-Instruct": 32768,
"meta-llama/Meta-Llama-3-70B-Instruct": 8192,
"CohereForAI/c4ai-command-r-plus-08-2024": 32768,
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": 32768,
"meta-llama/Llama-2-70b-chat-hf": 8192,
"HuggingFaceH4/zephyr-7b-alpha": 17432,
"HuggingFaceH4/zephyr-7b-beta": 32768,
"mistralai/Mistral-7B-Instruct-v0.1": 32768,
"mistralai/Mistral-7B-Instruct-v0.2": 32768,
"mistralai/Mistral-7B-Instruct-v0.3": 32768,
"mistralai/Mistral-Nemo-Instruct-2407": 32768,
"meta-llama/Meta-Llama-3-8B-Instruct": 8192,
"mistralai/Mistral-7B-v0.1": 32768,
"bigcode/starcoder2-3b": 16384,
"bigcode/starcoder2-15b": 16384,
"HuggingFaceH4/starchat2-15b-v0.1": 16384,
"codellama/CodeLlama-7b-hf": 8192,
"codellama/CodeLlama-13b-hf": 8192,
"codellama/CodeLlama-34b-Instruct-hf": 8192,
"meta-llama/Llama-2-7b-chat-hf": 8192,
"meta-llama/Llama-2-13b-chat-hf": 8192,
"OpenAssistant/oasst-sft-6-llama-30b": 2048,
"TheBloke/vicuna-7B-v1.5-GPTQ": 2048,
"HuggingFaceH4/starchat-beta": 8192,
"bigcode/octocoder": 8192,
"vwxyzjn/starcoderbase-triviaqa": 8192,
"lvwerra/starcoderbase-gsm8k": 8192,
"NousResearch/Hermes-3-Llama-3.1-8B": 16384,
"microsoft/Phi-3.5-mini-instruct": 32768,
"meta-llama/Llama-3.1-70B-Instruct": 32768,
"meta-llama/Llama-3.1-8B-Instruct": 8192,
} as const;
// Order of the elements in InferenceModal.svelte is determined by this const
export const inferenceSnippetLanguages = ["python", "js", "curl"] as const;
export type InferenceSnippetLanguage = (typeof inferenceSnippetLanguages)[number];
const GET_SNIPPET_FN = {
curl: snippets.curl.getCurlInferenceSnippet,
js: snippets.js.getJsInferenceSnippet,
python: snippets.python.getPythonInferenceSnippet,
} as const;
export type GetInferenceSnippetReturn = (InferenceSnippet & { language: InferenceSnippetLanguage })[];
export function getInferenceSnippet(
model: Model,
provider: InferenceProvider,
language: InferenceSnippetLanguage,
accessToken: string,
opts?: Record<string, unknown>
): GetInferenceSnippetReturn {
// If it's a custom model, we don't generate inference snippets
if (isCustomModel(model)) {
return [];
}
const providerId = model.inferenceProviderMapping.find(p => p.provider === provider)?.providerId;
const snippetsByClient = GET_SNIPPET_FN[language](
{ ...model, inference: "" },
accessToken,
provider,
providerId,
opts
);
return snippetsByClient.map(snippetByClient => ({ ...snippetByClient, language }));
}
/**
* - If language is defined, the function checks if in an inference snippet is available for that specific language
*/
export function hasInferenceSnippet(
model: Model,
provider: InferenceProvider,
language: InferenceSnippetLanguage
): boolean {
if (isCustomModel(model)) return false;
return getInferenceSnippet(model, provider, language, "").length > 0;
}
const tokenizers = new Map<string, PreTrainedTokenizer>();
export async function getTokenizer(model: Model) {
if (tokenizers.has(model.id)) return tokenizers.get(model.id)!;
const tokenizer = await AutoTokenizer.from_pretrained(model.id);
tokenizers.set(model.id, tokenizer);
return tokenizer;
}
export async function getTokens(conversation: Conversation): Promise<number> {
const model = conversation.model;
if (isCustomModel(model)) return 0;
const tokenizer = await getTokenizer(model);
// This is a simplified version - you might need to adjust based on your exact needs
let formattedText = "";
conversation.messages.forEach((message, index) => {
let content = `<|start_header_id|>${message.role}<|end_header_id|>\n\n${message.content?.trim()}<|eot_id|>`;
// Add BOS token to the first message
if (index === 0) {
content = "<|begin_of_text|>" + content;
}
formattedText += content;
});
// Encode the text to get tokens
const encodedInput = tokenizer.encode(formattedText);
// Return the number of tokens
return encodedInput.length;
}
|