File size: 9,853 Bytes
c670717
97c4991
 
 
 
 
c670717
97c4991
899d9c6
0ff4ef8
97c4991
b924465
97c4991
 
899d9c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c7e6f1
97c4991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b61328c
97c4991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
573aa88
b61328c
60216ec
573aa88
97c4991
 
 
 
 
b61328c
899d9c6
9ab40fd
dcf3974
5f94ff7
97c4991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f94ff7
 
 
f977d49
 
8c7e6f1
 
 
b61328c
631cc27
97c4991
 
 
 
 
 
 
573aa88
97c4991
 
 
 
 
 
 
 
 
 
 
8c7e6f1
97c4991
 
f977d49
7716903
51a1671
 
f977d49
60216ec
8c7e6f1
dd66861
c670717
97c4991
c670717
dd66861
d47c403
e8b5344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b924465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c670717
b924465
 
 
 
 
97c4991
 
 
 
 
b924465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c670717
b924465
 
 
97c4991
b924465
 
c670717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import { AutoTokenizer, PreTrainedTokenizer } from "@huggingface/transformers";
import {
	isCustomModel,
	type Conversation,
	type ConversationMessage,
	type CustomModel,
	type Model,
} from "$lib/types.js";
import type { ChatCompletionInputMessage, InferenceSnippet } from "@huggingface/tasks";
import { type ChatCompletionOutputMessage } from "@huggingface/tasks";
import { token } from "$lib/state/token.svelte";
import { HfInference, snippets, type InferenceProvider } from "@huggingface/inference";
import OpenAI from "openai";

type ChatCompletionInputMessageChunk =
	NonNullable<ChatCompletionInputMessage["content"]> extends string | (infer U)[] ? U : never;

function parseMessage(message: ConversationMessage): ChatCompletionInputMessage {
	if (!message.images) return message;
	return {
		...message,
		content: [
			{
				type: "text",
				text: message.content ?? "",
			},
			...message.images.map(img => {
				return {
					type: "image_url",
					image_url: { url: img },
				} satisfies ChatCompletionInputMessageChunk;
			}),
		],
	};
}

type HFCompletionMetadata = {
	type: "huggingface";
	client: HfInference;
	args: Parameters<HfInference["chatCompletion"]>[0];
};

type OpenAICompletionMetadata = {
	type: "openai";
	client: OpenAI;
	args: OpenAI.ChatCompletionCreateParams;
};

type CompletionMetadata = HFCompletionMetadata | OpenAICompletionMetadata;

function parseOpenAIMessages(
	messages: ConversationMessage[],
	systemMessage?: ConversationMessage
): OpenAI.ChatCompletionMessageParam[] {
	const parsedMessages: OpenAI.ChatCompletionMessageParam[] = [];

	if (systemMessage?.content) {
		parsedMessages.push({
			role: "system",
			content: systemMessage.content,
		});
	}

	return [
		...parsedMessages,
		...messages.map(msg => ({
			role: msg.role === "assistant" ? ("assistant" as const) : ("user" as const),
			content: msg.content || "",
		})),
	];
}

function getCompletionMetadata(conversation: Conversation): CompletionMetadata {
	const { model, systemMessage } = conversation;

	// Handle OpenAI-compatible models
	if (isCustomModel(model)) {
		const openai = new OpenAI({
			apiKey: model.accessToken,
			baseURL: model.endpointUrl,
			dangerouslyAllowBrowser: true,
		});

		return {
			type: "openai",
			client: openai,
			args: {
				messages: parseOpenAIMessages(conversation.messages, systemMessage),
				model: model.id,
			},
		};
	}

	// Handle HuggingFace models
	const messages = [
		...(isSystemPromptSupported(model) && systemMessage.content?.length ? [systemMessage] : []),
		...conversation.messages,
	];

	return {
		type: "huggingface",
		client: new HfInference(token.value),
		args: {
			model: model.id,
			messages: messages.map(parseMessage),
			provider: conversation.provider,
			...conversation.config,
		},
	};
}

export async function handleStreamingResponse(
	conversation: Conversation,
	onChunk: (content: string) => void,
	abortController: AbortController
): Promise<void> {
	const metadata = getCompletionMetadata(conversation);

	if (metadata.type === "openai") {
		const stream = await metadata.client.chat.completions.create({
			...metadata.args,
			stream: true,
		} as OpenAI.ChatCompletionCreateParamsStreaming);

		let out = "";
		for await (const chunk of stream) {
			if (chunk.choices[0]?.delta?.content) {
				out += chunk.choices[0].delta.content;
				onChunk(out);
			}
		}
		return;
	}

	// HuggingFace streaming
	let out = "";
	for await (const chunk of metadata.client.chatCompletionStream(metadata.args, { signal: abortController.signal })) {
		if (chunk.choices && chunk.choices.length > 0 && chunk.choices[0]?.delta?.content) {
			out += chunk.choices[0].delta.content;
			onChunk(out);
		}
	}
}

export async function handleNonStreamingResponse(
	conversation: Conversation
): Promise<{ message: ChatCompletionOutputMessage; completion_tokens: number }> {
	const metadata = getCompletionMetadata(conversation);

	if (metadata.type === "openai") {
		const response = await metadata.client.chat.completions.create({
			...metadata.args,
			stream: false,
		} as OpenAI.ChatCompletionCreateParamsNonStreaming);

		if (response.choices && response.choices.length > 0 && response.choices[0]?.message) {
			return {
				message: {
					role: "assistant",
					content: response.choices[0].message.content || "",
				},
				completion_tokens: response.usage?.completion_tokens || 0,
			};
		}
		throw new Error("No response from the model");
	}

	// HuggingFace non-streaming
	const response = await metadata.client.chatCompletion(metadata.args);
	if (response.choices && response.choices.length > 0) {
		const { message } = response.choices[0]!;
		const { completion_tokens } = response.usage;
		return { message, completion_tokens };
	}
	throw new Error("No response from the model");
}

export function isSystemPromptSupported(model: Model | CustomModel) {
	if (isCustomModel(model)) return true; // OpenAI-compatible models support system messages
	return model?.config.tokenizer_config?.chat_template?.includes("system");
}

export const defaultSystemMessage: { [key: string]: string } = {
	"Qwen/QwQ-32B-Preview":
		"You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step.",
} as const;

export const customMaxTokens: { [key: string]: number } = {
	"01-ai/Yi-1.5-34B-Chat": 2048,
	"HuggingFaceM4/idefics-9b-instruct": 2048,
	"deepseek-ai/DeepSeek-Coder-V2-Instruct": 16384,
	"bigcode/starcoder": 8192,
	"bigcode/starcoderplus": 8192,
	"HuggingFaceH4/starcoderbase-finetuned-oasst1": 8192,
	"google/gemma-7b": 8192,
	"google/gemma-1.1-7b-it": 8192,
	"google/gemma-2b": 8192,
	"google/gemma-1.1-2b-it": 8192,
	"google/gemma-2-27b-it": 8192,
	"google/gemma-2-9b-it": 4096,
	"google/gemma-2-2b-it": 8192,
	"tiiuae/falcon-7b": 8192,
	"tiiuae/falcon-7b-instruct": 8192,
	"timdettmers/guanaco-33b-merged": 2048,
	"mistralai/Mixtral-8x7B-Instruct-v0.1": 32768,
	"Qwen/Qwen2.5-72B-Instruct": 32768,
	"Qwen/Qwen2.5-Coder-32B-Instruct": 32768,
	"meta-llama/Meta-Llama-3-70B-Instruct": 8192,
	"CohereForAI/c4ai-command-r-plus-08-2024": 32768,
	"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": 32768,
	"meta-llama/Llama-2-70b-chat-hf": 8192,
	"HuggingFaceH4/zephyr-7b-alpha": 17432,
	"HuggingFaceH4/zephyr-7b-beta": 32768,
	"mistralai/Mistral-7B-Instruct-v0.1": 32768,
	"mistralai/Mistral-7B-Instruct-v0.2": 32768,
	"mistralai/Mistral-7B-Instruct-v0.3": 32768,
	"mistralai/Mistral-Nemo-Instruct-2407": 32768,
	"meta-llama/Meta-Llama-3-8B-Instruct": 8192,
	"mistralai/Mistral-7B-v0.1": 32768,
	"bigcode/starcoder2-3b": 16384,
	"bigcode/starcoder2-15b": 16384,
	"HuggingFaceH4/starchat2-15b-v0.1": 16384,
	"codellama/CodeLlama-7b-hf": 8192,
	"codellama/CodeLlama-13b-hf": 8192,
	"codellama/CodeLlama-34b-Instruct-hf": 8192,
	"meta-llama/Llama-2-7b-chat-hf": 8192,
	"meta-llama/Llama-2-13b-chat-hf": 8192,
	"OpenAssistant/oasst-sft-6-llama-30b": 2048,
	"TheBloke/vicuna-7B-v1.5-GPTQ": 2048,
	"HuggingFaceH4/starchat-beta": 8192,
	"bigcode/octocoder": 8192,
	"vwxyzjn/starcoderbase-triviaqa": 8192,
	"lvwerra/starcoderbase-gsm8k": 8192,
	"NousResearch/Hermes-3-Llama-3.1-8B": 16384,
	"microsoft/Phi-3.5-mini-instruct": 32768,
	"meta-llama/Llama-3.1-70B-Instruct": 32768,
	"meta-llama/Llama-3.1-8B-Instruct": 8192,
} as const;

// Order of the elements in InferenceModal.svelte is determined by this const
export const inferenceSnippetLanguages = ["python", "js", "curl"] as const;

export type InferenceSnippetLanguage = (typeof inferenceSnippetLanguages)[number];

const GET_SNIPPET_FN = {
	curl: snippets.curl.getCurlInferenceSnippet,
	js: snippets.js.getJsInferenceSnippet,
	python: snippets.python.getPythonInferenceSnippet,
} as const;

export type GetInferenceSnippetReturn = (InferenceSnippet & { language: InferenceSnippetLanguage })[];

export function getInferenceSnippet(
	model: Model,
	provider: InferenceProvider,
	language: InferenceSnippetLanguage,
	accessToken: string,
	opts?: Record<string, unknown>
): GetInferenceSnippetReturn {
	// If it's a custom model, we don't generate inference snippets
	if (isCustomModel(model)) {
		return [];
	}

	const providerId = model.inferenceProviderMapping.find(p => p.provider === provider)?.providerId;
	const snippetsByClient = GET_SNIPPET_FN[language](
		{ ...model, inference: "" },
		accessToken,
		provider,
		providerId,
		opts
	);
	return snippetsByClient.map(snippetByClient => ({ ...snippetByClient, language }));
}

/**
 * - If language is defined, the function checks if in an inference snippet is available for that specific language
 */
export function hasInferenceSnippet(
	model: Model,
	provider: InferenceProvider,
	language: InferenceSnippetLanguage
): boolean {
	if (isCustomModel(model)) return false;
	return getInferenceSnippet(model, provider, language, "").length > 0;
}

const tokenizers = new Map<string, PreTrainedTokenizer>();

export async function getTokenizer(model: Model) {
	if (tokenizers.has(model.id)) return tokenizers.get(model.id)!;
	const tokenizer = await AutoTokenizer.from_pretrained(model.id);
	tokenizers.set(model.id, tokenizer);
	return tokenizer;
}

export async function getTokens(conversation: Conversation): Promise<number> {
	const model = conversation.model;
	if (isCustomModel(model)) return 0;
	const tokenizer = await getTokenizer(model);

	// This is a simplified version - you might need to adjust based on your exact needs
	let formattedText = "";

	conversation.messages.forEach((message, index) => {
		let content = `<|start_header_id|>${message.role}<|end_header_id|>\n\n${message.content?.trim()}<|eot_id|>`;

		// Add BOS token to the first message
		if (index === 0) {
			content = "<|begin_of_text|>" + content;
		}

		formattedText += content;
	});

	// Encode the text to get tokens
	const encodedInput = tokenizer.encode(formattedText);

	// Return the number of tokens
	return encodedInput.length;
}