Spaces:
Configuration error
Configuration error
Tweaks
Browse files- .gitignore +4 -1
- README.md +12 -1
- app.py +45 -19
.gitignore
CHANGED
|
@@ -157,4 +157,7 @@ cython_debug/
|
|
| 157 |
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 158 |
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 159 |
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 160 |
-
#.idea/
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 158 |
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 159 |
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 160 |
+
#.idea/
|
| 161 |
+
|
| 162 |
+
# Local development
|
| 163 |
+
data/
|
README.md
CHANGED
|
@@ -14,6 +14,7 @@ A basic example of an RLHF interface with a Gradio app.
|
|
| 14 |
**Instructions for someone to use for their own project:**
|
| 15 |
|
| 16 |
*Setting up the Space*
|
|
|
|
| 17 |
1. Clone this repo and deploy it on your own Hugging Face space.
|
| 18 |
2. Add the following secrets to your space:
|
| 19 |
- `HF_TOKEN`: One of your Hugging Face tokens.
|
|
@@ -24,11 +25,21 @@ A basic example of an RLHF interface with a Gradio app.
|
|
| 24 |
huggingface.co, the app will use your token to automatically store new HITs
|
| 25 |
in your dataset. Setting `FORCE_PUSH` to "yes" ensures that your repo will
|
| 26 |
force push changes to the dataset during data collection. Otherwise,
|
| 27 |
-
accidental manual changes to your dataset could result in your space
|
| 28 |
merge conflicts as it automatically tries to push the dataset to the hub. For
|
| 29 |
local development, add these three keys to a `.env` file, and consider setting
|
| 30 |
`FORCE_PUSH` to "no".
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
*Running Data Collection*
|
|
|
|
| 32 |
1. On your local repo that you pulled, create a copy of `config.py.example`,
|
| 33 |
just called `config.py`. Now, put keys from your AWS account in `config.py`.
|
| 34 |
These keys should be for an AWS account that has the
|
|
|
|
| 14 |
**Instructions for someone to use for their own project:**
|
| 15 |
|
| 16 |
*Setting up the Space*
|
| 17 |
+
|
| 18 |
1. Clone this repo and deploy it on your own Hugging Face space.
|
| 19 |
2. Add the following secrets to your space:
|
| 20 |
- `HF_TOKEN`: One of your Hugging Face tokens.
|
|
|
|
| 25 |
huggingface.co, the app will use your token to automatically store new HITs
|
| 26 |
in your dataset. Setting `FORCE_PUSH` to "yes" ensures that your repo will
|
| 27 |
force push changes to the dataset during data collection. Otherwise,
|
| 28 |
+
accidental manual changes to your dataset could result in your space getting
|
| 29 |
merge conflicts as it automatically tries to push the dataset to the hub. For
|
| 30 |
local development, add these three keys to a `.env` file, and consider setting
|
| 31 |
`FORCE_PUSH` to "no".
|
| 32 |
+
|
| 33 |
+
To launch the Space locally, run:
|
| 34 |
+
|
| 35 |
+
```bash
|
| 36 |
+
python app.py
|
| 37 |
+
```
|
| 38 |
+
|
| 39 |
+
The app will then be available at http://127.0.0.1:7860
|
| 40 |
+
|
| 41 |
*Running Data Collection*
|
| 42 |
+
|
| 43 |
1. On your local repo that you pulled, create a copy of `config.py.example`,
|
| 44 |
just called `config.py`. Now, put keys from your AWS account in `config.py`.
|
| 45 |
These keys should be for an AWS account that has the
|
app.py
CHANGED
|
@@ -1,20 +1,21 @@
|
|
| 1 |
# Basic example for doing model-in-the-loop dynamic adversarial data collection
|
| 2 |
# using Gradio Blocks.
|
|
|
|
| 3 |
import os
|
|
|
|
| 4 |
import uuid
|
|
|
|
| 5 |
from urllib.parse import parse_qs
|
|
|
|
| 6 |
import gradio as gr
|
| 7 |
-
from huggingface_hub import Repository
|
| 8 |
from dotenv import load_dotenv
|
| 9 |
-
from
|
| 10 |
-
import
|
| 11 |
-
from utils import force_git_push
|
| 12 |
-
import threading
|
| 13 |
-
|
| 14 |
-
from langchain.prompts import load_prompt
|
| 15 |
-
from langchain import LLMChain, PromptTemplate
|
| 16 |
-
from langchain.llms import HuggingFaceHub
|
| 17 |
from langchain.chains.conversation.memory import ConversationBufferMemory
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# These variables are for storing the mturk HITs in a Hugging Face dataset.
|
| 20 |
if Path(".env").is_file():
|
|
@@ -22,10 +23,8 @@ if Path(".env").is_file():
|
|
| 22 |
DATASET_REPO_URL = os.getenv("DATASET_REPO_URL")
|
| 23 |
FORCE_PUSH = os.getenv("FORCE_PUSH")
|
| 24 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 25 |
-
|
| 26 |
PROMPT_TEMPLATES = Path("prompt_templates")
|
| 27 |
-
|
| 28 |
-
# Set env variable for langchain
|
| 29 |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = HF_TOKEN
|
| 30 |
|
| 31 |
DATA_FILENAME = "data.jsonl"
|
|
@@ -59,26 +58,45 @@ asynchronous_push(f_stop)
|
|
| 59 |
# Now let's run the app!
|
| 60 |
prompt = load_prompt(PROMPT_TEMPLATES / "openai_chatgpt.json")
|
| 61 |
|
| 62 |
-
chatbot_1 =
|
| 63 |
llm=HuggingFaceHub(
|
| 64 |
repo_id="google/flan-t5-xl",
|
| 65 |
-
model_kwargs={"temperature": 1
|
| 66 |
),
|
| 67 |
prompt=prompt,
|
| 68 |
verbose=False,
|
| 69 |
memory=ConversationBufferMemory(ai_prefix="Assistant"),
|
| 70 |
)
|
| 71 |
|
| 72 |
-
chatbot_2 =
|
| 73 |
llm=HuggingFaceHub(
|
| 74 |
repo_id="bigscience/bloom",
|
| 75 |
-
model_kwargs={"temperature":
|
| 76 |
),
|
| 77 |
prompt=prompt,
|
| 78 |
verbose=False,
|
| 79 |
memory=ConversationBufferMemory(ai_prefix="Assistant"),
|
| 80 |
)
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
demo = gr.Blocks()
|
| 84 |
|
|
@@ -94,6 +112,8 @@ with demo:
|
|
| 94 |
"generated_responses": [],
|
| 95 |
"response_1": "",
|
| 96 |
"response_2": "",
|
|
|
|
|
|
|
| 97 |
}
|
| 98 |
state = gr.JSON(state_dict, visible=False)
|
| 99 |
|
|
@@ -104,21 +124,27 @@ with demo:
|
|
| 104 |
|
| 105 |
# Generate model prediction
|
| 106 |
def _predict(txt, state):
|
| 107 |
-
|
| 108 |
response_1 = chatbot_1.predict(input=txt)
|
| 109 |
response_2 = chatbot_2.predict(input=txt)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
response2model[response_1] = chatbot_1.llm.repo_id
|
| 111 |
response2model[response_2] = chatbot_2.llm.repo_id
|
|
|
|
|
|
|
| 112 |
|
| 113 |
state["cnt"] += 1
|
| 114 |
|
| 115 |
new_state_md = f"Inputs remaining in HIT: {state['cnt']}/{TOTAL_CNT}"
|
| 116 |
|
| 117 |
-
state["data"].append({"cnt": state["cnt"], "text": txt, "response_1": response_1, "response_2": response_2, "response2model": response2model})
|
| 118 |
state["past_user_inputs"].append(txt)
|
| 119 |
|
| 120 |
past_conversation_string = "<br />".join(["<br />".join(["π: " + user_input, "π€: " + model_response]) for user_input, model_response in zip(state["past_user_inputs"], state["generated_responses"] + [""])])
|
| 121 |
-
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True, choices=[response_1, response_2], interactive=True, value=response_1), gr.update(value=past_conversation_string), state, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), new_state_md, dummy
|
| 122 |
|
| 123 |
def _select_response(selected_response, state, dummy):
|
| 124 |
done = state["cnt"] == TOTAL_CNT
|
|
|
|
| 1 |
# Basic example for doing model-in-the-loop dynamic adversarial data collection
|
| 2 |
# using Gradio Blocks.
|
| 3 |
+
import json
|
| 4 |
import os
|
| 5 |
+
import threading
|
| 6 |
import uuid
|
| 7 |
+
from pathlib import Path
|
| 8 |
from urllib.parse import parse_qs
|
| 9 |
+
|
| 10 |
import gradio as gr
|
|
|
|
| 11 |
from dotenv import load_dotenv
|
| 12 |
+
from huggingface_hub import Repository
|
| 13 |
+
from langchain import ConversationChain
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
from langchain.chains.conversation.memory import ConversationBufferMemory
|
| 15 |
+
from langchain.llms import HuggingFaceHub
|
| 16 |
+
from langchain.prompts import load_prompt
|
| 17 |
+
|
| 18 |
+
from utils import force_git_push
|
| 19 |
|
| 20 |
# These variables are for storing the mturk HITs in a Hugging Face dataset.
|
| 21 |
if Path(".env").is_file():
|
|
|
|
| 23 |
DATASET_REPO_URL = os.getenv("DATASET_REPO_URL")
|
| 24 |
FORCE_PUSH = os.getenv("FORCE_PUSH")
|
| 25 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
| 26 |
PROMPT_TEMPLATES = Path("prompt_templates")
|
| 27 |
+
# Set env variable for langchain to communicate with Hugging Face Hub
|
|
|
|
| 28 |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = HF_TOKEN
|
| 29 |
|
| 30 |
DATA_FILENAME = "data.jsonl"
|
|
|
|
| 58 |
# Now let's run the app!
|
| 59 |
prompt = load_prompt(PROMPT_TEMPLATES / "openai_chatgpt.json")
|
| 60 |
|
| 61 |
+
chatbot_1 = ConversationChain(
|
| 62 |
llm=HuggingFaceHub(
|
| 63 |
repo_id="google/flan-t5-xl",
|
| 64 |
+
model_kwargs={"temperature": 1}
|
| 65 |
),
|
| 66 |
prompt=prompt,
|
| 67 |
verbose=False,
|
| 68 |
memory=ConversationBufferMemory(ai_prefix="Assistant"),
|
| 69 |
)
|
| 70 |
|
| 71 |
+
chatbot_2 = ConversationChain(
|
| 72 |
llm=HuggingFaceHub(
|
| 73 |
repo_id="bigscience/bloom",
|
| 74 |
+
model_kwargs={"temperature": 0.7}
|
| 75 |
),
|
| 76 |
prompt=prompt,
|
| 77 |
verbose=False,
|
| 78 |
memory=ConversationBufferMemory(ai_prefix="Assistant"),
|
| 79 |
)
|
| 80 |
|
| 81 |
+
chatbot_3 = ConversationChain(
|
| 82 |
+
llm=HuggingFaceHub(
|
| 83 |
+
repo_id="bigscience/T0_3B",
|
| 84 |
+
model_kwargs={"temperature": 1}
|
| 85 |
+
),
|
| 86 |
+
prompt=prompt,
|
| 87 |
+
verbose=False,
|
| 88 |
+
memory=ConversationBufferMemory(ai_prefix="Assistant"),
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
chatbot_4 = ConversationChain(
|
| 92 |
+
llm=HuggingFaceHub(
|
| 93 |
+
repo_id="EleutherAI/gpt-j-6B",
|
| 94 |
+
model_kwargs={"temperature": 1}
|
| 95 |
+
),
|
| 96 |
+
prompt=prompt,
|
| 97 |
+
verbose=False,
|
| 98 |
+
memory=ConversationBufferMemory(ai_prefix="Assistant"),
|
| 99 |
+
)
|
| 100 |
|
| 101 |
demo = gr.Blocks()
|
| 102 |
|
|
|
|
| 112 |
"generated_responses": [],
|
| 113 |
"response_1": "",
|
| 114 |
"response_2": "",
|
| 115 |
+
"response_3": "",
|
| 116 |
+
"response_4": "",
|
| 117 |
}
|
| 118 |
state = gr.JSON(state_dict, visible=False)
|
| 119 |
|
|
|
|
| 124 |
|
| 125 |
# Generate model prediction
|
| 126 |
def _predict(txt, state):
|
| 127 |
+
# TODO: parallelize this!
|
| 128 |
response_1 = chatbot_1.predict(input=txt)
|
| 129 |
response_2 = chatbot_2.predict(input=txt)
|
| 130 |
+
response_3 = chatbot_3.predict(input=txt)
|
| 131 |
+
response_4 = chatbot_4.predict(input=txt)
|
| 132 |
+
|
| 133 |
+
response2model = {}
|
| 134 |
response2model[response_1] = chatbot_1.llm.repo_id
|
| 135 |
response2model[response_2] = chatbot_2.llm.repo_id
|
| 136 |
+
response2model[response_3] = chatbot_3.llm.repo_id
|
| 137 |
+
response2model[response_4] = chatbot_4.llm.repo_id
|
| 138 |
|
| 139 |
state["cnt"] += 1
|
| 140 |
|
| 141 |
new_state_md = f"Inputs remaining in HIT: {state['cnt']}/{TOTAL_CNT}"
|
| 142 |
|
| 143 |
+
state["data"].append({"cnt": state["cnt"], "text": txt, "response_1": response_1, "response_2": response_2, "response_3": response_3, "response_4": response_4,"response2model": response2model})
|
| 144 |
state["past_user_inputs"].append(txt)
|
| 145 |
|
| 146 |
past_conversation_string = "<br />".join(["<br />".join(["π: " + user_input, "π€: " + model_response]) for user_input, model_response in zip(state["past_user_inputs"], state["generated_responses"] + [""])])
|
| 147 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True, choices=[response_1, response_2, response_3, response_4], interactive=True, value=response_1), gr.update(value=past_conversation_string), state, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), new_state_md, dummy
|
| 148 |
|
| 149 |
def _select_response(selected_response, state, dummy):
|
| 150 |
done = state["cnt"] == TOTAL_CNT
|