Spaces:
Runtime error
Runtime error
Commit
·
061d2e4
1
Parent(s):
4809033
add register information
Browse files- app.py +129 -92
- en_examples_with_stats.json +2 -2
- zh_examples_with_stats.json +2 -2
app.py
CHANGED
|
@@ -120,8 +120,6 @@ class Visualization_for_lang:
|
|
| 120 |
st.dataframe(displayed_examples)
|
| 121 |
|
| 122 |
def filtering_of_docs(self):
|
| 123 |
-
st.sidebar.subheader("Parameters of the filtering on documents")
|
| 124 |
-
|
| 125 |
def set_sliders():
|
| 126 |
columns = list(self.docs)
|
| 127 |
keys = []
|
|
@@ -377,12 +375,6 @@ class Visualization_for_lang:
|
|
| 377 |
|
| 378 |
return keys, conds
|
| 379 |
|
| 380 |
-
self.keys, conds = set_sliders()
|
| 381 |
-
self.parameters = self.keys * 1
|
| 382 |
-
|
| 383 |
-
all_conds = [subcond for cond in list(conds.values()) for subcond in cond]
|
| 384 |
-
all_conds = np.all(all_conds, axis=0)
|
| 385 |
-
|
| 386 |
with st.expander(
|
| 387 |
f"Filtering on documents, for {self.num_docs} {self.lang} documents"
|
| 388 |
):
|
|
@@ -390,101 +382,146 @@ class Visualization_for_lang:
|
|
| 390 |
f"Filtering on documents, for {self.num_docs} {self.lang} documents"
|
| 391 |
)
|
| 392 |
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 396 |
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
|
|
|
|
|
|
| 401 |
|
| 402 |
-
|
| 403 |
-
|
|
|
|
|
|
|
| 404 |
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
cond_filter,
|
| 410 |
-
"Discarded documents for the filter on the number of words",
|
| 411 |
-
"docs",
|
| 412 |
-
)
|
| 413 |
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
)
|
| 418 |
-
Visualization_for_lang.display_dataset(
|
| 419 |
-
self.docs,
|
| 420 |
-
cond_filter,
|
| 421 |
-
"Discarded documents for the filter on the character repetition ratio",
|
| 422 |
-
"docs",
|
| 423 |
-
)
|
| 424 |
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
Visualization_for_lang.display_dataset(
|
| 430 |
-
self.docs,
|
| 431 |
-
cond_filter,
|
| 432 |
-
"Discarded documents for the filter on the word repetition ratio",
|
| 433 |
-
"docs",
|
| 434 |
-
)
|
| 435 |
|
| 436 |
-
if
|
| 437 |
-
|
| 438 |
-
np.all(conds["special_characters_ratio"], axis=0)
|
| 439 |
-
)
|
| 440 |
-
Visualization_for_lang.display_dataset(
|
| 441 |
-
self.docs,
|
| 442 |
-
cond_filter,
|
| 443 |
-
"Discarded documents for the filter on the special characters ratio",
|
| 444 |
-
"docs",
|
| 445 |
-
)
|
| 446 |
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
|
|
|
|
|
|
| 475 |
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
|
|
|
|
|
|
| 484 |
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 488 |
|
| 489 |
st.header("Download data")
|
| 490 |
|
|
|
|
| 120 |
st.dataframe(displayed_examples)
|
| 121 |
|
| 122 |
def filtering_of_docs(self):
|
|
|
|
|
|
|
| 123 |
def set_sliders():
|
| 124 |
columns = list(self.docs)
|
| 125 |
keys = []
|
|
|
|
| 375 |
|
| 376 |
return keys, conds
|
| 377 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 378 |
with st.expander(
|
| 379 |
f"Filtering on documents, for {self.num_docs} {self.lang} documents"
|
| 380 |
):
|
|
|
|
| 382 |
f"Filtering on documents, for {self.num_docs} {self.lang} documents"
|
| 383 |
)
|
| 384 |
|
| 385 |
+
if "labels" in list(self.docs):
|
| 386 |
+
chosen_label = st.selectbox(
|
| 387 |
+
label="Consider only documents that include the following label",
|
| 388 |
+
options=[
|
| 389 |
+
"All",
|
| 390 |
+
"NA: Narrative",
|
| 391 |
+
"IN: Informational Description",
|
| 392 |
+
"OP: Opinion",
|
| 393 |
+
"ID: Interactive Discussion",
|
| 394 |
+
"HI: How-to/Instruction",
|
| 395 |
+
"IP: Informational Persuasion",
|
| 396 |
+
"LY: Lyrical",
|
| 397 |
+
"SP: Spoken",
|
| 398 |
+
],
|
| 399 |
+
)
|
| 400 |
+
chosen_label = chosen_label.split(":")[0]
|
| 401 |
+
if chosen_label != "All":
|
| 402 |
+
cond_label = list(
|
| 403 |
+
self.docs["labels"].apply(
|
| 404 |
+
lambda x: True if chosen_label in x else False
|
| 405 |
+
)
|
| 406 |
+
)
|
| 407 |
+
self.docs = self.docs[cond_label]
|
| 408 |
|
| 409 |
+
if self.docs.empty:
|
| 410 |
+
st.markdown(
|
| 411 |
+
"No document to display, please try to select a different label."
|
| 412 |
+
)
|
| 413 |
+
self.keys = []
|
| 414 |
+
self.parameters = []
|
| 415 |
|
| 416 |
+
else:
|
| 417 |
+
st.sidebar.subheader("Parameters of the filtering on documents")
|
| 418 |
+
self.keys, conds = set_sliders()
|
| 419 |
+
self.parameters = self.keys * 1
|
| 420 |
|
| 421 |
+
all_conds = [
|
| 422 |
+
subcond for cond in list(conds.values()) for subcond in cond
|
| 423 |
+
]
|
| 424 |
+
all_conds = np.all(all_conds, axis=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 425 |
|
| 426 |
+
Visualization_for_lang.display_dataset(
|
| 427 |
+
self.docs, np.invert(all_conds), "Discarded documents", "docs"
|
| 428 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 429 |
|
| 430 |
+
# st.subheader("Display discarded documents by filter")
|
| 431 |
+
display_discarded_documents_by_filter = st.checkbox(
|
| 432 |
+
"Display discarded documents by filter"
|
| 433 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 434 |
|
| 435 |
+
if display_discarded_documents_by_filter:
|
| 436 |
+
columns = list(self.docs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 437 |
|
| 438 |
+
if "number_words" in columns:
|
| 439 |
+
cond_filter = np.invert(np.all(conds["number_words"], axis=0))
|
| 440 |
+
Visualization_for_lang.display_dataset(
|
| 441 |
+
self.docs,
|
| 442 |
+
cond_filter,
|
| 443 |
+
"Discarded documents for the filter on the number of words",
|
| 444 |
+
"docs",
|
| 445 |
+
)
|
| 446 |
|
| 447 |
+
if "character_repetition_ratio" in columns:
|
| 448 |
+
cond_filter = np.invert(
|
| 449 |
+
np.all(conds["character_repetition_ratio"], axis=0)
|
| 450 |
+
)
|
| 451 |
+
Visualization_for_lang.display_dataset(
|
| 452 |
+
self.docs,
|
| 453 |
+
cond_filter,
|
| 454 |
+
"Discarded documents for the filter on the character repetition ratio",
|
| 455 |
+
"docs",
|
| 456 |
+
)
|
| 457 |
|
| 458 |
+
if "word_repetition_ratio" in columns:
|
| 459 |
+
cond_filter = np.invert(
|
| 460 |
+
np.all(conds["word_repetition_ratio"], axis=0)
|
| 461 |
+
)
|
| 462 |
+
Visualization_for_lang.display_dataset(
|
| 463 |
+
self.docs,
|
| 464 |
+
cond_filter,
|
| 465 |
+
"Discarded documents for the filter on the word repetition ratio",
|
| 466 |
+
"docs",
|
| 467 |
+
)
|
| 468 |
|
| 469 |
+
if "special_characters_ratio" in columns:
|
| 470 |
+
cond_filter = np.invert(
|
| 471 |
+
np.all(conds["special_characters_ratio"], axis=0)
|
| 472 |
+
)
|
| 473 |
+
Visualization_for_lang.display_dataset(
|
| 474 |
+
self.docs,
|
| 475 |
+
cond_filter,
|
| 476 |
+
"Discarded documents for the filter on the special characters ratio",
|
| 477 |
+
"docs",
|
| 478 |
+
)
|
| 479 |
|
| 480 |
+
if "stopwords_ratio" in columns:
|
| 481 |
+
cond_filter = np.invert(
|
| 482 |
+
np.all(conds["stopwords_ratio"], axis=0)
|
| 483 |
+
)
|
| 484 |
+
Visualization_for_lang.display_dataset(
|
| 485 |
+
self.docs,
|
| 486 |
+
cond_filter,
|
| 487 |
+
"Discarded documents for the filter on the stop words ratio",
|
| 488 |
+
"docs",
|
| 489 |
+
)
|
| 490 |
+
|
| 491 |
+
if "flagged_words_ratio" in columns:
|
| 492 |
+
cond_filter = np.invert(
|
| 493 |
+
np.all(conds["flagged_words_ratio"], axis=0)
|
| 494 |
+
)
|
| 495 |
+
Visualization_for_lang.display_dataset(
|
| 496 |
+
self.docs,
|
| 497 |
+
cond_filter,
|
| 498 |
+
"Discarded documents for the filter on the flagged words ratio",
|
| 499 |
+
"docs",
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
if "lang_id_score" in columns:
|
| 503 |
+
cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0))
|
| 504 |
+
Visualization_for_lang.display_dataset(
|
| 505 |
+
self.docs,
|
| 506 |
+
cond_filter,
|
| 507 |
+
"Discarded documents for the filter on the language identification confidence score",
|
| 508 |
+
"docs",
|
| 509 |
+
)
|
| 510 |
+
|
| 511 |
+
if "perplexity_score" in columns:
|
| 512 |
+
cond_filter = np.invert(
|
| 513 |
+
np.all(conds["perplexity_score"], axis=0)
|
| 514 |
+
)
|
| 515 |
+
Visualization_for_lang.display_dataset(
|
| 516 |
+
self.docs,
|
| 517 |
+
cond_filter,
|
| 518 |
+
"Discarded documents for the filter on the perplexity score",
|
| 519 |
+
"docs",
|
| 520 |
+
)
|
| 521 |
+
|
| 522 |
+
Visualization_for_lang.display_dataset(
|
| 523 |
+
self.docs, all_conds, "Retained documents", "docs"
|
| 524 |
+
)
|
| 525 |
|
| 526 |
st.header("Download data")
|
| 527 |
|
en_examples_with_stats.json
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cd798b2bc010480cf0777b41bac9dfde2ab1c0ba17e151400b9e1359aa1a114c
|
| 3 |
+
size 276101032
|
zh_examples_with_stats.json
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e8b02e485e2736cc5e407a567adcb09d228ce0e2eb6ed7609749e77028446175
|
| 3 |
+
size 74914733
|