Spaces:
Runtime error
Runtime error
merge
Browse files
app_2.py
ADDED
|
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Run with: streamlit run visualization.py
|
| 2 |
+
|
| 3 |
+
import streamlit as st
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
import base64
|
| 8 |
+
import json
|
| 9 |
+
import pandas as pd
|
| 10 |
+
|
| 11 |
+
import numpy as np
|
| 12 |
+
|
| 13 |
+
import matplotlib.pyplot as plt
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class Visualization:
|
| 17 |
+
def __init__(
|
| 18 |
+
self,
|
| 19 |
+
path_instructions,
|
| 20 |
+
path_data,
|
| 21 |
+
lang,
|
| 22 |
+
num_docs,
|
| 23 |
+
num_docs_for_words,
|
| 24 |
+
max_len_text_display,
|
| 25 |
+
):
|
| 26 |
+
self.path_instructions = path_instructions
|
| 27 |
+
self.path_data = path_data
|
| 28 |
+
self.lang = lang
|
| 29 |
+
self.num_docs = num_docs
|
| 30 |
+
self.num_docs_for_words = num_docs_for_words
|
| 31 |
+
self.max_len_text_display = max_len_text_display
|
| 32 |
+
|
| 33 |
+
def preamble(self):
|
| 34 |
+
st.markdown(
|
| 35 |
+
"Before diving into this demo, you might want to take a look at how the filtering pipeline of OSCAR looks like in more detail."
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
def get_binary_file_downloader_html(bin_file, file_label="File"):
|
| 39 |
+
with open(bin_file, "rb") as f:
|
| 40 |
+
data = f.read()
|
| 41 |
+
bin_str = base64.b64encode(data).decode()
|
| 42 |
+
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">{file_label}</a>'
|
| 43 |
+
return href
|
| 44 |
+
|
| 45 |
+
st.markdown(
|
| 46 |
+
get_binary_file_downloader_html(
|
| 47 |
+
self.path_instructions,
|
| 48 |
+
"Download the filtering pipeline of OSCAR as pdf",
|
| 49 |
+
),
|
| 50 |
+
unsafe_allow_html=True,
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
def open_data(self):
|
| 54 |
+
with open(self.path_data) as json_file:
|
| 55 |
+
data = json.load(json_file)
|
| 56 |
+
|
| 57 |
+
self.num_docs = min(self.num_docs, len(data))
|
| 58 |
+
self.num_docs_for_words = min(self.num_docs_for_words, len(data))
|
| 59 |
+
|
| 60 |
+
if "words" in data[0]:
|
| 61 |
+
words = [doc["words"] for doc in data[: self.num_docs_for_words]]
|
| 62 |
+
words = [word for doc in words for word in doc]
|
| 63 |
+
self.words = pd.DataFrame(words)
|
| 64 |
+
else:
|
| 65 |
+
self.words = None
|
| 66 |
+
|
| 67 |
+
docs = data[: self.num_docs]
|
| 68 |
+
for doc in docs:
|
| 69 |
+
if not (self.words is None):
|
| 70 |
+
del doc["words"]
|
| 71 |
+
if len(doc["text"]) > self.max_len_text_display:
|
| 72 |
+
doc["text"] = (
|
| 73 |
+
doc["text"][: self.max_len_text_display]
|
| 74 |
+
+ " [...] [THIS LONG TEXT HAS BEEN TRUNCATED FOR DISPLAY REASONS]"
|
| 75 |
+
)
|
| 76 |
+
self.docs = pd.DataFrame(docs)
|
| 77 |
+
|
| 78 |
+
def set_title(self):
|
| 79 |
+
st.title(f"{self.num_docs} {self.lang} documents from OSCAR with their stats.")
|
| 80 |
+
|
| 81 |
+
def filtering_of_docs(self):
|
| 82 |
+
st.sidebar.subheader("Parameters of the filtering on documents")
|
| 83 |
+
|
| 84 |
+
def set_sliders(docs):
|
| 85 |
+
columns = list(docs)
|
| 86 |
+
keys = []
|
| 87 |
+
conds = {}
|
| 88 |
+
|
| 89 |
+
def get_cond(key, cutoff, max_cutoff):
|
| 90 |
+
if max_cutoff:
|
| 91 |
+
return self.docs[key] <= cutoff
|
| 92 |
+
return self.docs[key] >= cutoff
|
| 93 |
+
|
| 94 |
+
def print_discared_by_cond(cond):
|
| 95 |
+
st.sidebar.caption(
|
| 96 |
+
f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter."
|
| 97 |
+
)
|
| 98 |
+
st.sidebar.caption("---------")
|
| 99 |
+
|
| 100 |
+
if "number_words" in columns:
|
| 101 |
+
cutoff_def = "If the number of words of a document is lower than this number, the document is removed."
|
| 102 |
+
max_nb_words = int(np.max(docs["number_words"])) + 1
|
| 103 |
+
cutoff_min_number_words = st.sidebar.slider(
|
| 104 |
+
cutoff_def, 0, min(max_nb_words, 500), 0
|
| 105 |
+
)
|
| 106 |
+
new_key = ("number_words", cutoff_min_number_words, False)
|
| 107 |
+
keys.append(new_key)
|
| 108 |
+
cond_1 = get_cond(new_key[0], new_key[1], new_key[2])
|
| 109 |
+
print_discared_by_cond(cond_1)
|
| 110 |
+
|
| 111 |
+
cutoff_def = "If the number of words of a document is higher than this number, the document is removed."
|
| 112 |
+
cutoff_max_number_words = st.sidebar.slider(
|
| 113 |
+
cutoff_def, 0, max_nb_words, max_nb_words
|
| 114 |
+
)
|
| 115 |
+
new_key = ("number_words", cutoff_max_number_words, True)
|
| 116 |
+
keys.append(new_key)
|
| 117 |
+
cond_2 = get_cond(new_key[0], new_key[1], new_key[2])
|
| 118 |
+
print_discared_by_cond(cond_2)
|
| 119 |
+
|
| 120 |
+
conds["number_words"] = [cond_1, cond_2]
|
| 121 |
+
|
| 122 |
+
if "special_characters_ratio" in columns:
|
| 123 |
+
cutoff_def = "If the special characters ratio of a document is higher than this number, the document is removed."
|
| 124 |
+
cutoff_special_characters_ratio = st.sidebar.slider(
|
| 125 |
+
cutoff_def, 0.0, 1.0, 1.0, step=0.01
|
| 126 |
+
)
|
| 127 |
+
new_key = (
|
| 128 |
+
"special_characters_ratio",
|
| 129 |
+
cutoff_special_characters_ratio,
|
| 130 |
+
True,
|
| 131 |
+
)
|
| 132 |
+
keys.append(new_key)
|
| 133 |
+
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 134 |
+
print_discared_by_cond(cond)
|
| 135 |
+
conds["special_characters_ratio"] = [cond]
|
| 136 |
+
|
| 137 |
+
if "stopwords_ratio" in columns:
|
| 138 |
+
cutoff_def = "If the stop words ratio of a document is lower than this number, the document is removed."
|
| 139 |
+
cutoff_stopwords_ratio = st.sidebar.slider(
|
| 140 |
+
cutoff_def, 0.0, 1.0, 0.0, step=0.01
|
| 141 |
+
)
|
| 142 |
+
new_key = ("stopwords_ratio", cutoff_stopwords_ratio, False)
|
| 143 |
+
keys.append(new_key)
|
| 144 |
+
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 145 |
+
print_discared_by_cond(cond)
|
| 146 |
+
conds["stopwords_ratio"] = [cond]
|
| 147 |
+
|
| 148 |
+
if "badwords_ratio" in columns:
|
| 149 |
+
cutoff_def = "If the bad words ratio of a document is higher than this number, the document is removed."
|
| 150 |
+
cutoff_badwords_ratio = st.sidebar.slider(
|
| 151 |
+
cutoff_def, 0.0, 1.0, 1.0, step=0.01
|
| 152 |
+
)
|
| 153 |
+
new_key = ("badwords_ratio", cutoff_badwords_ratio, True)
|
| 154 |
+
keys.append(new_key)
|
| 155 |
+
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 156 |
+
print_discared_by_cond(cond)
|
| 157 |
+
conds["badwords_ratio"] = [cond]
|
| 158 |
+
|
| 159 |
+
if "lang_id_score" in columns:
|
| 160 |
+
cutoff_def = "If the confidence score for the language identification prediction of a document is lower than this number, the document is removed."
|
| 161 |
+
cutoff_lang_id_score = st.sidebar.slider(
|
| 162 |
+
cutoff_def, 0.0, 1.0, 0.0, step=0.01
|
| 163 |
+
)
|
| 164 |
+
new_key = ("lang_id_score", cutoff_lang_id_score, False)
|
| 165 |
+
keys.append(new_key)
|
| 166 |
+
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 167 |
+
print_discared_by_cond(cond)
|
| 168 |
+
conds["lang_id_score"] = [cond]
|
| 169 |
+
|
| 170 |
+
if "perplexity_score" in columns:
|
| 171 |
+
cutoff_def = "If the perplexity score of a document is higher than this number, the document is removed."
|
| 172 |
+
max_pp = int(np.max(docs["perplexity_score"])) + 1
|
| 173 |
+
cutoff_perplexity_score = st.sidebar.slider(
|
| 174 |
+
cutoff_def, 0, max_pp, max_pp
|
| 175 |
+
)
|
| 176 |
+
new_key = ("perplexity_score", cutoff_perplexity_score, True)
|
| 177 |
+
keys.append(new_key)
|
| 178 |
+
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 179 |
+
print_discared_by_cond(cond)
|
| 180 |
+
conds["perplexity_score"] = [cond]
|
| 181 |
+
|
| 182 |
+
return keys, conds
|
| 183 |
+
|
| 184 |
+
self.keys, conds = set_sliders(self.docs)
|
| 185 |
+
|
| 186 |
+
all_conds = [subcond for cond in list(conds.values()) for subcond in cond]
|
| 187 |
+
all_conds = np.all(all_conds, axis=0)
|
| 188 |
+
|
| 189 |
+
st.header("Filtering on documents")
|
| 190 |
+
|
| 191 |
+
def display_dataset(cond, description):
|
| 192 |
+
displayed_docs = self.docs.loc[cond]
|
| 193 |
+
st.subheader(
|
| 194 |
+
f"{description}: {len(displayed_docs)} docs ({len(displayed_docs) / self.num_docs * 100:.2f}%)"
|
| 195 |
+
)
|
| 196 |
+
st.markdown(
|
| 197 |
+
"Click on a column to sort by it, place the cursor on the text to display it."
|
| 198 |
+
)
|
| 199 |
+
st.dataframe(displayed_docs)
|
| 200 |
+
|
| 201 |
+
display_dataset(np.invert(all_conds), "Discarded documents")
|
| 202 |
+
|
| 203 |
+
# st.subheader("Display discarded documents by filter")
|
| 204 |
+
display_discarded_documents_by_filter = st.checkbox(
|
| 205 |
+
"Display discarded documents by filter"
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
if display_discarded_documents_by_filter:
|
| 209 |
+
columns = list(self.docs)
|
| 210 |
+
|
| 211 |
+
if "number_words" in columns:
|
| 212 |
+
cond_filter = np.invert(np.all(conds["number_words"], axis=0))
|
| 213 |
+
display_dataset(
|
| 214 |
+
cond_filter,
|
| 215 |
+
"Discarded documents for the filter on the number of words",
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
if "special_characters_ratio" in columns:
|
| 219 |
+
cond_filter = np.invert(
|
| 220 |
+
np.all(conds["special_characters_ratio"], axis=0)
|
| 221 |
+
)
|
| 222 |
+
display_dataset(
|
| 223 |
+
cond_filter,
|
| 224 |
+
"Discarded documents for the filter on the special characters ratio",
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
if "stopwords_ratio" in columns:
|
| 228 |
+
cond_filter = np.invert(np.all(conds["stopwords_ratio"], axis=0))
|
| 229 |
+
display_dataset(
|
| 230 |
+
cond_filter,
|
| 231 |
+
"Discarded documents for the filter on the stop words ratio",
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
if "badwords_ratio" in columns:
|
| 235 |
+
cond_filter = np.invert(np.all(conds["badwords_ratio"], axis=0))
|
| 236 |
+
display_dataset(
|
| 237 |
+
cond_filter,
|
| 238 |
+
"Discarded documents for the filter on the bad words ratio",
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
if "lang_id_score" in columns:
|
| 242 |
+
cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0))
|
| 243 |
+
display_dataset(
|
| 244 |
+
cond_filter,
|
| 245 |
+
"Discarded documents for the filter on the language identification confidence score",
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
if "perplexity_score" in columns:
|
| 249 |
+
cond_filter = np.invert(np.all(conds["perplexity_score"], axis=0))
|
| 250 |
+
display_dataset(
|
| 251 |
+
cond_filter,
|
| 252 |
+
"Discarded documents for the filter on the perplexity score",
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
display_dataset(all_conds, "Retained documents")
|
| 256 |
+
|
| 257 |
+
def filtering_of_words(self):
|
| 258 |
+
if not (self.words is None):
|
| 259 |
+
st.sidebar.subheader("Parameter of the filtering on words")
|
| 260 |
+
|
| 261 |
+
cutoff_def = "If the length of a word is higher than this number, the word is removed."
|
| 262 |
+
max_len_word = min(int(np.max(self.words["len_word"])) + 1, 200)
|
| 263 |
+
cutoff_word = st.sidebar.slider(cutoff_def, 0, max_len_word, max_len_word)
|
| 264 |
+
|
| 265 |
+
incorrect_substrings = st.sidebar.checkbox(
|
| 266 |
+
"Remove words with incorrect substrings."
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
cond_words = self.words["len_word"] <= cutoff_word
|
| 270 |
+
if incorrect_substrings:
|
| 271 |
+
cond_words = cond_words & np.invert(self.words["incorrect_substring"])
|
| 272 |
+
|
| 273 |
+
st.header("Filtering on words")
|
| 274 |
+
|
| 275 |
+
st.markdown(
|
| 276 |
+
f"Since the number of words is way larger than the number of documents, "
|
| 277 |
+
f"we consider in this section words for the first {self.num_docs_for_words} documents only."
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
discarded_words = self.words.loc[np.invert(cond_words)]
|
| 281 |
+
st.subheader(
|
| 282 |
+
f"Discarded words: {len(discarded_words)} words ({len(discarded_words) / len(self.words) * 100:.2f}%)"
|
| 283 |
+
)
|
| 284 |
+
st.markdown(
|
| 285 |
+
"Click on a column to sort by it, place the cursor on the text to display it."
|
| 286 |
+
)
|
| 287 |
+
st.dataframe(discarded_words)
|
| 288 |
+
|
| 289 |
+
retained_words = self.words.loc[cond_words]
|
| 290 |
+
st.subheader(
|
| 291 |
+
f"Retained words: {len(retained_words)} words ({len(retained_words) / len(self.words) * 100:.2f}%)"
|
| 292 |
+
)
|
| 293 |
+
st.markdown(
|
| 294 |
+
"Click on a column to sort by it, place the cursor on the text to display it."
|
| 295 |
+
)
|
| 296 |
+
st.dataframe(retained_words)
|
| 297 |
+
|
| 298 |
+
def plot_distributions_filtering_parameters(self):
|
| 299 |
+
st.header("Distributions of the filtering parameters")
|
| 300 |
+
|
| 301 |
+
display_distributions = st.checkbox("Display distributions")
|
| 302 |
+
|
| 303 |
+
if display_distributions:
|
| 304 |
+
|
| 305 |
+
def plot_hist(dataframe, key, num_bins=50):
|
| 306 |
+
st.subheader(" ".join(key.split("_")))
|
| 307 |
+
hist_values = dataframe[key].values
|
| 308 |
+
max_range = np.max(hist_values)
|
| 309 |
+
hist_values = np.histogram(
|
| 310 |
+
hist_values, bins=num_bins, range=(0, max_range)
|
| 311 |
+
)[0]
|
| 312 |
+
st.bar_chart(hist_values)
|
| 313 |
+
st.markdown(f"Each bin is of size: {max_range/num_bins}.")
|
| 314 |
+
|
| 315 |
+
for key in list({el[0]: None for el in self.keys}):
|
| 316 |
+
plot_hist(self.docs, key)
|
| 317 |
+
|
| 318 |
+
if not (self.words is None):
|
| 319 |
+
plot_hist(self.words, "len_word")
|
| 320 |
+
|
| 321 |
+
def plot_zipf_law(self):
|
| 322 |
+
if not (self.words is None):
|
| 323 |
+
st.header("Zipf's Law")
|
| 324 |
+
|
| 325 |
+
display_zipf_law = st.checkbox("Display Zipf's Law")
|
| 326 |
+
|
| 327 |
+
if display_zipf_law:
|
| 328 |
+
|
| 329 |
+
freq_words = {}
|
| 330 |
+
for _, row in self.words.iterrows():
|
| 331 |
+
freq_words[row["word"]] = freq_words.get(row["word"], 0) + 1
|
| 332 |
+
freq_words = np.array(list(freq_words.values()))
|
| 333 |
+
freq_words = -np.sort(-freq_words)
|
| 334 |
+
|
| 335 |
+
fig, ax = plt.subplots()
|
| 336 |
+
ax.loglog(freq_words)
|
| 337 |
+
ax.set_title("Zipf's Law")
|
| 338 |
+
ax.set_xlabel("$i$-th most frequent word")
|
| 339 |
+
ax.set_ylabel("frequency in the documents")
|
| 340 |
+
st.pyplot(fig)
|
| 341 |
+
|
| 342 |
+
def download_data(self):
|
| 343 |
+
st.header("Download data")
|
| 344 |
+
|
| 345 |
+
with open(self.path_data) as json_file:
|
| 346 |
+
btn = st.download_button(
|
| 347 |
+
label="Download data as json",
|
| 348 |
+
data=json_file,
|
| 349 |
+
file_name="data.json",
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
def visualization(self):
|
| 353 |
+
self.preamble()
|
| 354 |
+
self.open_data()
|
| 355 |
+
self.set_title()
|
| 356 |
+
self.filtering_of_docs()
|
| 357 |
+
self.filtering_of_words()
|
| 358 |
+
self.plot_distributions_filtering_parameters()
|
| 359 |
+
#self.plot_zipf_law()
|
| 360 |
+
self.download_data()
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
path_instructions = "./filtering_pipeline_oscar.pdf"
|
| 364 |
+
path_data = "./zh_examples_with_stats.json"
|
| 365 |
+
lang = "Chinese"
|
| 366 |
+
num_docs = 5000
|
| 367 |
+
num_docs_for_words = 500
|
| 368 |
+
max_len_text_display = 10000
|
| 369 |
+
|
| 370 |
+
visualization = Visualization(
|
| 371 |
+
path_instructions,
|
| 372 |
+
path_data,
|
| 373 |
+
lang,
|
| 374 |
+
num_docs,
|
| 375 |
+
num_docs_for_words,
|
| 376 |
+
max_len_text_display,
|
| 377 |
+
)
|
| 378 |
+
visualization.visualization()
|