Spaces:
Runtime error
Runtime error
TVN update
Browse files- app.py +53 -81
- en_examples_with_stats_no_small_docs.json +3 -0
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import json
|
| 3 |
import pandas as pd
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
|
|
@@ -15,7 +16,7 @@ def visualization(path_data, lang, num_docs, num_docs_for_words):
|
|
| 15 |
st.title(f"{num_docs} {lang} documents from Oscar with their stats.")
|
| 16 |
|
| 17 |
sentences = [doc["text"].split(" ") for doc in data[:num_docs_for_words]]
|
| 18 |
-
words = [word for sentence in sentences for word in sentence]
|
| 19 |
words_data = [{"len_word": len(word), "word": word} for word in words]
|
| 20 |
words_data = pd.DataFrame(words_data)
|
| 21 |
|
|
@@ -24,39 +25,46 @@ def visualization(path_data, lang, num_docs, num_docs_for_words):
|
|
| 24 |
|
| 25 |
columns = list(data)
|
| 26 |
keys = []
|
|
|
|
| 27 |
|
| 28 |
-
st.header("
|
| 29 |
|
| 30 |
-
if "special_characters_ratio" in columns:
|
| 31 |
-
cutoff_special_characters_ratio = st.slider(
|
| 32 |
-
"Max cutoff special characters ratio", 0.0, 1.0, 1.0, step=0.01
|
| 33 |
-
)
|
| 34 |
-
keys.append(("special_characters_ratio", cutoff_special_characters_ratio, True))
|
| 35 |
|
| 36 |
-
if "
|
| 37 |
-
|
| 38 |
-
"
|
| 39 |
)
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
| 45 |
)
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
| 51 |
)
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
| 58 |
)
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
cond = [
|
| 62 |
(data[key] <= cutoff) if max_cutoff else (data[key] >= cutoff)
|
|
@@ -64,78 +72,42 @@ def visualization(path_data, lang, num_docs, num_docs_for_words):
|
|
| 64 |
]
|
| 65 |
cond = np.all(cond, axis=0)
|
| 66 |
|
| 67 |
-
data_keep = data.loc[cond]
|
| 68 |
-
st.header("Data that we keep")
|
| 69 |
-
st.markdown("Click on a column to sort by it.")
|
| 70 |
-
st.markdown("Place the cursor on the text to display it.")
|
| 71 |
-
st.dataframe(data_keep)
|
| 72 |
-
|
| 73 |
data_not_keep = data.loc[np.invert(cond)]
|
| 74 |
-
st.
|
| 75 |
-
st.markdown("Click on a column to sort by it.")
|
| 76 |
-
st.markdown("Place the cursor on the text to display it.")
|
| 77 |
st.dataframe(data_not_keep)
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
def plot_hist(dataframe, key, num_bins=50):
|
| 80 |
-
st.
|
| 81 |
hist_values = dataframe[key].values
|
| 82 |
max_range = np.max(hist_values)
|
| 83 |
hist_values = np.histogram(hist_values, bins=num_bins, range=(0, max_range))[0]
|
| 84 |
st.bar_chart(hist_values)
|
| 85 |
st.markdown(f"Each bin is of size: {max_range/num_bins}.")
|
| 86 |
|
| 87 |
-
for key, _, _ in keys:
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
st.header("
|
| 91 |
-
|
| 92 |
-
def get_frequency_words(data):
|
| 93 |
-
freq_words = {}
|
| 94 |
-
for index, row in data.iterrows():
|
| 95 |
-
for word in row["text"].split(" "):
|
| 96 |
-
if word in freq_words:
|
| 97 |
-
freq_words[word] += 1
|
| 98 |
-
else:
|
| 99 |
-
freq_words[word] = 1
|
| 100 |
-
freq_words = np.array(list(freq_words.values()))
|
| 101 |
-
freq_words = -np.sort(-freq_words)
|
| 102 |
-
return freq_words
|
| 103 |
-
|
| 104 |
-
freq_words_data = get_frequency_words(data)
|
| 105 |
-
freq_words_data_keep = get_frequency_words(data_keep)
|
| 106 |
-
freq_words_data_not_keep = get_frequency_words(data_not_keep)
|
| 107 |
-
|
| 108 |
-
fig, ax = plt.subplots()
|
| 109 |
-
ax.loglog(freq_words_data)
|
| 110 |
-
ax.loglog(freq_words_data_keep)
|
| 111 |
-
ax.loglog(freq_words_data_not_keep)
|
| 112 |
-
ax.set_title("Zipf's Law")
|
| 113 |
-
ax.set_xlabel("$i$-th most frequent word")
|
| 114 |
-
ax.set_ylabel("frequency in the documents")
|
| 115 |
-
ax.legend(["All data", "Data that we keep", "Data that is thrown away"])
|
| 116 |
-
st.pyplot(fig)
|
| 117 |
-
|
| 118 |
-
st.markdown("If less than three curves are displayed, it means that there are overlaps.")
|
| 119 |
-
|
| 120 |
-
st.header("Parameter of the filtering for words")
|
| 121 |
max_len_word = int(np.max(words_data["len_word"])) + 1
|
| 122 |
-
cutoff_word = st.slider("
|
| 123 |
cond_words = words_data["len_word"] <= cutoff_word
|
| 124 |
|
| 125 |
words_keep = words_data.loc[cond_words]
|
| 126 |
-
st.
|
| 127 |
-
st.markdown("Click on a column to sort by it.")
|
| 128 |
-
st.markdown("Place the cursor on the text to display it.")
|
| 129 |
st.dataframe(words_keep)
|
| 130 |
|
| 131 |
words_not_keep = words_data.loc[np.invert(cond_words)]
|
| 132 |
-
st.
|
| 133 |
-
st.markdown("Click on a column to sort by it.")
|
| 134 |
-
st.markdown("Place the cursor on the text to display it.")
|
| 135 |
st.dataframe(words_not_keep)
|
| 136 |
|
| 137 |
-
plot_hist(words_data, "len_word")
|
| 138 |
-
|
| 139 |
st.header("Download data")
|
| 140 |
|
| 141 |
with open(path_data) as json_file:
|
|
@@ -146,7 +118,7 @@ def visualization(path_data, lang, num_docs, num_docs_for_words):
|
|
| 146 |
)
|
| 147 |
|
| 148 |
|
| 149 |
-
path_data = "./
|
| 150 |
lang = "English"
|
| 151 |
num_docs = 5000
|
| 152 |
num_docs_for_words = 500
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import json
|
| 3 |
import pandas as pd
|
| 4 |
+
import math
|
| 5 |
import numpy as np
|
| 6 |
import matplotlib.pyplot as plt
|
| 7 |
|
|
|
|
| 16 |
st.title(f"{num_docs} {lang} documents from Oscar with their stats.")
|
| 17 |
|
| 18 |
sentences = [doc["text"].split(" ") for doc in data[:num_docs_for_words]]
|
| 19 |
+
words = set([word for sentence in sentences for word in sentence])
|
| 20 |
words_data = [{"len_word": len(word), "word": word} for word in words]
|
| 21 |
words_data = pd.DataFrame(words_data)
|
| 22 |
|
|
|
|
| 25 |
|
| 26 |
columns = list(data)
|
| 27 |
keys = []
|
| 28 |
+
values = {}
|
| 29 |
|
| 30 |
+
st.header("Filtering based on document content")
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
if "special_%" in columns:
|
| 34 |
+
special_ratio = st.sidebar.slider(
|
| 35 |
+
"% filtered by special characters ratio", 0.0, 100.0, 0.0, step=1.0
|
| 36 |
)
|
| 37 |
+
cutoff_index = max(0, math.floor((100 - special_ratio) * len(data.index) / 100) - 1)
|
| 38 |
+
special_cutoff = np.partition(data["special_%"], cutoff_index)[cutoff_index]
|
| 39 |
+
st.sidebar.text(f"Kept text with <{special_cutoff:.1f}% special chars")
|
| 40 |
+
keys.append(("special_%", special_cutoff, True))
|
| 41 |
+
|
| 42 |
+
if "stop_%" in columns:
|
| 43 |
+
stop_ratio = st.sidebar.slider(
|
| 44 |
+
"% filtered by stop word ratio", 0.0, 100.0, 0.0, step=1.0
|
| 45 |
)
|
| 46 |
+
cutoff_index = max(0, math.floor(stop_ratio * len(data.index) / 100) - 1)
|
| 47 |
+
stop_cutoff = np.partition(data["stop_%"], cutoff_index)[cutoff_index]
|
| 48 |
+
st.sidebar.text(f"Kept text with >{stop_cutoff:.1f}% stop words")
|
| 49 |
+
keys.append(("stop_%", stop_cutoff, False))
|
| 50 |
+
|
| 51 |
+
if "bad_%" in columns:
|
| 52 |
+
bad_ratio = st.sidebar.slider(
|
| 53 |
+
"% filtered by badwords ratio", 0.0, 100.0, 0.0, step=1.0
|
| 54 |
)
|
| 55 |
+
bad_index = max(0, math.floor((100 - bad_ratio) * len(data.index) / 100) - 1)
|
| 56 |
+
bad_cutoff = np.partition(data["bad_%"], bad_index)[bad_index]
|
| 57 |
+
st.sidebar.text(f"Kept text with <{bad_cutoff:.1f}% bad words")
|
| 58 |
+
keys.append(("bad_%", bad_cutoff, True))
|
| 59 |
+
|
| 60 |
+
if "perplexity" in columns:
|
| 61 |
+
ppl_ratio = st.sidebar.slider(
|
| 62 |
+
"% filtered by perplexity", 0.0, 100.0, 0.0, step=1.0
|
| 63 |
)
|
| 64 |
+
ppl_index = max(0, math.floor((100 - ppl_ratio) * len(data.index) / 100) - 1)
|
| 65 |
+
ppl_cutoff = np.partition(data["perplexity"], ppl_index)[ppl_index]
|
| 66 |
+
st.sidebar.text(f"Kept text with <{ppl_cutoff:.0f} perplexity")
|
| 67 |
+
keys.append(("perplexity", ppl_cutoff, True))
|
| 68 |
|
| 69 |
cond = [
|
| 70 |
(data[key] <= cutoff) if max_cutoff else (data[key] >= cutoff)
|
|
|
|
| 72 |
]
|
| 73 |
cond = np.all(cond, axis=0)
|
| 74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
data_not_keep = data.loc[np.invert(cond)]
|
| 76 |
+
st.subheader("Filtered data")
|
| 77 |
+
st.markdown("Click on a column to sort by it, place the cursor on the text to display it.")
|
|
|
|
| 78 |
st.dataframe(data_not_keep)
|
| 79 |
|
| 80 |
+
data_keep = data.loc[cond]
|
| 81 |
+
st.subheader("Kept data")
|
| 82 |
+
st.markdown("Click on a column to sort by it, place the cursor on the text to display it.")
|
| 83 |
+
st.dataframe(data_keep)
|
| 84 |
+
|
| 85 |
def plot_hist(dataframe, key, num_bins=50):
|
| 86 |
+
st.subheader(" ".join(key.split("_")))
|
| 87 |
hist_values = dataframe[key].values
|
| 88 |
max_range = np.max(hist_values)
|
| 89 |
hist_values = np.histogram(hist_values, bins=num_bins, range=(0, max_range))[0]
|
| 90 |
st.bar_chart(hist_values)
|
| 91 |
st.markdown(f"Each bin is of size: {max_range/num_bins}.")
|
| 92 |
|
| 93 |
+
# for key, _, _ in keys:
|
| 94 |
+
# plot_hist(data, key)
|
| 95 |
+
|
| 96 |
+
st.header("Filtering links and concatenated words")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
max_len_word = int(np.max(words_data["len_word"])) + 1
|
| 98 |
+
cutoff_word = st.sidebar.slider("Word length cutoff", 0, max_len_word, max_len_word)
|
| 99 |
cond_words = words_data["len_word"] <= cutoff_word
|
| 100 |
|
| 101 |
words_keep = words_data.loc[cond_words]
|
| 102 |
+
st.subheader(f"Words that we keep (for {num_docs_for_words} documents)")
|
| 103 |
+
st.markdown("Click on a column to sort by it, place the cursor on the text to display it.")
|
|
|
|
| 104 |
st.dataframe(words_keep)
|
| 105 |
|
| 106 |
words_not_keep = words_data.loc[np.invert(cond_words)]
|
| 107 |
+
st.subheader(f"Words that are thrown away (for {num_docs_for_words} documents)")
|
| 108 |
+
st.markdown("Click on a column to sort by it, place the cursor on the text to display it.")
|
|
|
|
| 109 |
st.dataframe(words_not_keep)
|
| 110 |
|
|
|
|
|
|
|
| 111 |
st.header("Download data")
|
| 112 |
|
| 113 |
with open(path_data) as json_file:
|
|
|
|
| 118 |
)
|
| 119 |
|
| 120 |
|
| 121 |
+
path_data = "./en_examples_with_stats_no_small_docs.json"
|
| 122 |
lang = "English"
|
| 123 |
num_docs = 5000
|
| 124 |
num_docs_for_words = 500
|
en_examples_with_stats_no_small_docs.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:42de045d52e16b4c96ec03b332c12f406e52b22b442234eea4845f5b5598784c
|
| 3 |
+
size 21200705
|