init project
Browse files
app.py
CHANGED
|
@@ -1,9 +1,3 @@
|
|
| 1 |
-
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
|
| 2 |
-
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
|
| 3 |
-
#
|
| 4 |
-
# --------------------------------------------------------
|
| 5 |
-
# gradio demo
|
| 6 |
-
# --------------------------------------------------------
|
| 7 |
import os
|
| 8 |
import sys
|
| 9 |
sys.path.append(os.path.abspath('./modules'))
|
|
@@ -37,23 +31,22 @@ from modules.mobilesamv2.utils.transforms import ResizeLongestSide
|
|
| 37 |
# from modules.pe3r.models import Models
|
| 38 |
import torchvision.transforms as tvf
|
| 39 |
|
|
|
|
| 40 |
|
| 41 |
-
|
| 42 |
-
sys.path.append(os.path.abspath('./modules/ultralytics'))
|
| 43 |
-
|
| 44 |
-
from transformers import AutoTokenizer, AutoModel, AutoProcessor, SamModel
|
| 45 |
# from modules.mast3r.model import AsymmetricMASt3R
|
| 46 |
|
| 47 |
# from modules.sam2.build_sam import build_sam2_video_predictor
|
| 48 |
-
from modules.mobilesamv2.promt_mobilesamv2 import ObjectAwareModel
|
| 49 |
-
from modules.mobilesamv2 import sam_model_registry
|
| 50 |
|
| 51 |
-
from sam2.sam2_video_predictor import SAM2VideoPredictor
|
| 52 |
from modules.mast3r.model import AsymmetricMASt3R
|
| 53 |
|
| 54 |
|
| 55 |
silent = False
|
| 56 |
-
|
|
|
|
| 57 |
# pe3r = Models('cpu') # 'cpu' #
|
| 58 |
# print(device)
|
| 59 |
|
|
@@ -124,369 +117,369 @@ def get_3D_model_from_scene(outdir, scene, min_conf_thr=3, as_pointcloud=False,
|
|
| 124 |
return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
|
| 125 |
transparent_cams=transparent_cams, cam_size=cam_size)
|
| 126 |
|
| 127 |
-
def mask_nms(masks, threshold=0.8):
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
def filter(masks, keep):
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
def mask_to_box(mask):
|
| 150 |
-
|
| 151 |
-
|
| 152 |
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
def box_xyxy_to_xywh(box_xyxy):
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
def get_seg_img(mask, box, image):
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
def pad_img(img):
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
def slerp(u1, u2, t):
|
| 204 |
-
|
| 205 |
-
|
| 206 |
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
|
| 218 |
-
|
| 219 |
-
|
| 220 |
|
| 221 |
-
|
| 222 |
-
|
| 223 |
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
|
| 230 |
-
|
| 231 |
-
|
| 232 |
|
| 233 |
-
|
| 234 |
-
|
| 235 |
|
| 236 |
-
def slerp_multiple(vectors, t_values):
|
| 237 |
-
|
| 238 |
-
|
| 239 |
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
|
| 249 |
-
|
| 250 |
-
|
| 251 |
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
|
| 258 |
-
|
| 259 |
|
| 260 |
-
@torch.no_grad
|
| 261 |
-
def get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_image, yolov8_image, original_size, input_size, transform):
|
| 262 |
|
| 263 |
-
|
| 264 |
|
| 265 |
|
| 266 |
-
|
| 267 |
-
|
| 268 |
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
@torch.no_grad
|
| 318 |
-
def get_cog_feats(images, sam2, siglip, siglip_processor, yolov8, mobilesamv2):
|
| 319 |
-
|
| 320 |
-
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 321 |
-
|
| 322 |
-
cog_seg_maps = []
|
| 323 |
-
rev_cog_seg_maps = []
|
| 324 |
-
inference_state = sam2.init_state(images=images.sam2_images, video_height=images.sam2_video_size[0], video_width=images.sam2_video_size[1])
|
| 325 |
-
mask_num = 0
|
| 326 |
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
for mask in sam1_masks:
|
| 334 |
-
_, _, _ = sam2.add_new_mask(
|
| 335 |
-
inference_state=inference_state,
|
| 336 |
-
frame_idx=0,
|
| 337 |
-
obj_id=mask_num,
|
| 338 |
-
mask=mask,
|
| 339 |
-
)
|
| 340 |
-
mask_num += 1
|
| 341 |
-
|
| 342 |
-
video_segments = {} # video_segments contains the per-frame segmentation results
|
| 343 |
-
for out_frame_idx, out_obj_ids, out_mask_logits in sam2.propagate_in_video(inference_state):
|
| 344 |
-
sam2_masks = (out_mask_logits > 0.0).squeeze(1)
|
| 345 |
-
|
| 346 |
-
video_segments[out_frame_idx] = {
|
| 347 |
-
out_obj_id: sam2_masks[i].cpu().numpy()
|
| 348 |
-
for i, out_obj_id in enumerate(out_obj_ids)
|
| 349 |
-
}
|
| 350 |
-
|
| 351 |
-
if out_frame_idx == 0:
|
| 352 |
-
continue
|
| 353 |
-
|
| 354 |
-
sam1_masks = get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_images[out_frame_idx], np_images[out_frame_idx], np_images_size[out_frame_idx], sam1_images_size[out_frame_idx], images.sam1_transform)
|
| 355 |
-
|
| 356 |
-
for sam1_mask in sam1_masks:
|
| 357 |
-
flg = 1
|
| 358 |
-
for sam2_mask in sam2_masks:
|
| 359 |
-
# print(sam1_mask.shape, sam2_mask.shape)
|
| 360 |
-
area1 = sam1_mask.sum()
|
| 361 |
-
area2 = sam2_mask.sum()
|
| 362 |
-
intersection = (sam1_mask & sam2_mask).sum()
|
| 363 |
-
if min(intersection / area1, intersection / area2) > 0.25:
|
| 364 |
-
flg = 0
|
| 365 |
-
break
|
| 366 |
-
if flg:
|
| 367 |
-
video_segments[out_frame_idx][mask_num] = sam1_mask.cpu().numpy()
|
| 368 |
-
mask_num += 1
|
| 369 |
-
|
| 370 |
-
multi_view_clip_feats = torch.zeros((mask_num+1, 1024))
|
| 371 |
-
multi_view_clip_feats_map = {}
|
| 372 |
-
multi_view_clip_area_map = {}
|
| 373 |
-
for now_frame in range(0, len(video_segments), 1):
|
| 374 |
-
image = np_images[now_frame]
|
| 375 |
-
|
| 376 |
-
seg_img_list = []
|
| 377 |
-
out_obj_id_list = []
|
| 378 |
-
out_obj_mask_list = []
|
| 379 |
-
out_obj_area_list = []
|
| 380 |
-
# NOTE: background: -1
|
| 381 |
-
rev_seg_map = -np.ones(image.shape[:2], dtype=np.int64)
|
| 382 |
-
sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=False)
|
| 383 |
-
for out_obj_id, mask in sorted_dict_items:
|
| 384 |
-
if mask.sum() == 0:
|
| 385 |
-
continue
|
| 386 |
-
rev_seg_map[mask] = out_obj_id
|
| 387 |
-
rev_cog_seg_maps.append(rev_seg_map)
|
| 388 |
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 395 |
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
|
| 414 |
-
|
| 415 |
-
|
| 416 |
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
|
| 454 |
-
|
| 455 |
|
| 456 |
|
| 457 |
@spaces.GPU(duration=60)
|
| 458 |
-
def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
|
| 459 |
-
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size,
|
| 460 |
-
scenegraph_type, winsize, refid):
|
| 461 |
"""
|
| 462 |
from a list of images, run dust3r inference, global aligner.
|
| 463 |
then run get_3D_model_from_scene
|
| 464 |
"""
|
| 465 |
|
| 466 |
-
|
| 467 |
|
| 468 |
MAST3R_CKP = 'naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric'
|
| 469 |
mast3r = AsymmetricMASt3R.from_pretrained(MAST3R_CKP).to(device)
|
| 470 |
|
| 471 |
-
sam2 = SAM2VideoPredictor.from_pretrained('facebook/sam2.1-hiera-large', device=device)
|
| 472 |
|
| 473 |
-
siglip = AutoModel.from_pretrained("google/siglip-large-patch16-256", device_map=device)
|
| 474 |
-
siglip_processor = AutoProcessor.from_pretrained("google/siglip-large-patch16-256")
|
| 475 |
|
| 476 |
-
SAM1_DECODER_CKP = './checkpoints/Prompt_guided_Mask_Decoder.pt'
|
| 477 |
-
mobilesamv2 = sam_model_registry['sam_vit_h'](None)
|
| 478 |
-
sam1 = SamModel.from_pretrained('facebook/sam-vit-huge')
|
| 479 |
-
image_encoder = sam1.vision_encoder
|
| 480 |
|
| 481 |
-
prompt_encoder, mask_decoder = sam_model_registry['prompt_guided_decoder'](SAM1_DECODER_CKP)
|
| 482 |
-
mobilesamv2.prompt_encoder = prompt_encoder
|
| 483 |
-
mobilesamv2.mask_decoder = mask_decoder
|
| 484 |
-
mobilesamv2.image_encoder=image_encoder
|
| 485 |
-
mobilesamv2.to(device=device)
|
| 486 |
-
mobilesamv2.eval()
|
| 487 |
|
| 488 |
-
YOLO8_CKP='./checkpoints/ObjectAwareModel.pt'
|
| 489 |
-
yolov8 = ObjectAwareModel(YOLO8_CKP)
|
| 490 |
|
| 491 |
if len(filelist) < 2:
|
| 492 |
raise gradio.Error("Please input at least 2 images.")
|
|
@@ -494,16 +487,16 @@ def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
|
|
| 494 |
images = Images(filelist=filelist, device=device)
|
| 495 |
|
| 496 |
# try:
|
| 497 |
-
cog_seg_maps, rev_cog_seg_maps, cog_feats = get_cog_feats(images, sam2, siglip, siglip_processor, yolov8, mobilesamv2)
|
| 498 |
-
imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
|
| 499 |
# except Exception as e:
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
|
| 508 |
if len(imgs) == 1:
|
| 509 |
imgs = [imgs[0], copy.deepcopy(imgs[0])]
|
|
@@ -546,7 +539,6 @@ def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
|
|
| 546 |
|
| 547 |
scene.to('cpu')
|
| 548 |
torch.cuda.empty_cache()
|
| 549 |
-
|
| 550 |
return scene, outfile
|
| 551 |
|
| 552 |
# @spaces.GPU(duration=60)
|
|
@@ -581,37 +573,37 @@ with tempfile.TemporaryDirectory(suffix='pe3r_gradio_demo') as tmpdirname:
|
|
| 581 |
gradio.HTML('<h2 style="text-align: center;">PE3R Demo</h2>')
|
| 582 |
with gradio.Column():
|
| 583 |
inputfiles = gradio.File(file_count="multiple")
|
| 584 |
-
with gradio.Row():
|
| 585 |
-
schedule = gradio.Dropdown(["linear", "cosine"],
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
niter = gradio.Number(value=300, precision=0, minimum=0, maximum=5000,
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
scenegraph_type = gradio.Dropdown([("complete: all possible image pairs", "complete"),
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
winsize = gradio.Slider(label="Scene Graph: Window Size", value=1,
|
| 599 |
-
|
| 600 |
-
refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, maximum=0, step=1, visible=False)
|
| 601 |
|
| 602 |
run_btn = gradio.Button("Reconstruct")
|
| 603 |
|
| 604 |
-
with gradio.Row():
|
| 605 |
# adjust the confidence threshold
|
| 606 |
-
min_conf_thr = gradio.Slider(label="min_conf_thr", value=3.0, minimum=1.0, maximum=20, step=0.1, visible=False)
|
| 607 |
# adjust the camera size in the output pointcloud
|
| 608 |
-
cam_size = gradio.Slider(label="cam_size", value=0.05, minimum=0.001, maximum=0.1, step=0.001, visible=False)
|
| 609 |
-
with gradio.Row():
|
| 610 |
-
as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud", visible=False)
|
| 611 |
# two post process implemented
|
| 612 |
-
mask_sky = gradio.Checkbox(value=False, label="Mask sky", visible=False)
|
| 613 |
-
clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps", visible=False)
|
| 614 |
-
transparent_cams = gradio.Checkbox(value=True, label="Transparent cameras", visible=False)
|
| 615 |
|
| 616 |
with gradio.Row():
|
| 617 |
text_input = gradio.Textbox(label="Query Text")
|
|
@@ -623,9 +615,7 @@ with tempfile.TemporaryDirectory(suffix='pe3r_gradio_demo') as tmpdirname:
|
|
| 623 |
# events
|
| 624 |
|
| 625 |
run_btn.click(fn=recon_fun,
|
| 626 |
-
inputs=[inputfiles,
|
| 627 |
-
mask_sky, clean_depth, transparent_cams, cam_size,
|
| 628 |
-
scenegraph_type, winsize, refid],
|
| 629 |
outputs=[scene, outmodel]) # , outgallery
|
| 630 |
|
| 631 |
# find_btn.click(fn=get_3D_object_from_scene_fun,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import sys
|
| 3 |
sys.path.append(os.path.abspath('./modules'))
|
|
|
|
| 31 |
# from modules.pe3r.models import Models
|
| 32 |
import torchvision.transforms as tvf
|
| 33 |
|
| 34 |
+
# sys.path.append(os.path.abspath('./modules/ultralytics'))
|
| 35 |
|
| 36 |
+
# from transformers import AutoTokenizer, AutoModel, AutoProcessor, SamModel
|
|
|
|
|
|
|
|
|
|
| 37 |
# from modules.mast3r.model import AsymmetricMASt3R
|
| 38 |
|
| 39 |
# from modules.sam2.build_sam import build_sam2_video_predictor
|
| 40 |
+
# from modules.mobilesamv2.promt_mobilesamv2 import ObjectAwareModel
|
| 41 |
+
# from modules.mobilesamv2 import sam_model_registry
|
| 42 |
|
| 43 |
+
# from sam2.sam2_video_predictor import SAM2VideoPredictor
|
| 44 |
from modules.mast3r.model import AsymmetricMASt3R
|
| 45 |
|
| 46 |
|
| 47 |
silent = False
|
| 48 |
+
|
| 49 |
+
# device = 'cpu' #'cuda' if torch.cuda.is_available() else 'cpu' # #
|
| 50 |
# pe3r = Models('cpu') # 'cpu' #
|
| 51 |
# print(device)
|
| 52 |
|
|
|
|
| 117 |
return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
|
| 118 |
transparent_cams=transparent_cams, cam_size=cam_size)
|
| 119 |
|
| 120 |
+
# def mask_nms(masks, threshold=0.8):
|
| 121 |
+
# keep = []
|
| 122 |
+
# mask_num = len(masks)
|
| 123 |
+
# suppressed = np.zeros((mask_num), dtype=np.int64)
|
| 124 |
+
# for i in range(mask_num):
|
| 125 |
+
# if suppressed[i] == 1:
|
| 126 |
+
# continue
|
| 127 |
+
# keep.append(i)
|
| 128 |
+
# for j in range(i + 1, mask_num):
|
| 129 |
+
# if suppressed[j] == 1:
|
| 130 |
+
# continue
|
| 131 |
+
# intersection = (masks[i] & masks[j]).sum()
|
| 132 |
+
# if min(intersection / masks[i].sum(), intersection / masks[j].sum()) > threshold:
|
| 133 |
+
# suppressed[j] = 1
|
| 134 |
+
# return keep
|
| 135 |
+
|
| 136 |
+
# def filter(masks, keep):
|
| 137 |
+
# ret = []
|
| 138 |
+
# for i, m in enumerate(masks):
|
| 139 |
+
# if i in keep: ret.append(m)
|
| 140 |
+
# return ret
|
| 141 |
+
|
| 142 |
+
# def mask_to_box(mask):
|
| 143 |
+
# if mask.sum() == 0:
|
| 144 |
+
# return np.array([0, 0, 0, 0])
|
| 145 |
|
| 146 |
+
# # Get the rows and columns where the mask is 1
|
| 147 |
+
# rows = np.any(mask, axis=1)
|
| 148 |
+
# cols = np.any(mask, axis=0)
|
| 149 |
|
| 150 |
+
# # Get top, bottom, left, right edges
|
| 151 |
+
# top = np.argmax(rows)
|
| 152 |
+
# bottom = len(rows) - 1 - np.argmax(np.flip(rows))
|
| 153 |
+
# left = np.argmax(cols)
|
| 154 |
+
# right = len(cols) - 1 - np.argmax(np.flip(cols))
|
| 155 |
|
| 156 |
+
# return np.array([left, top, right, bottom])
|
| 157 |
+
|
| 158 |
+
# def box_xyxy_to_xywh(box_xyxy):
|
| 159 |
+
# box_xywh = deepcopy(box_xyxy)
|
| 160 |
+
# box_xywh[2] = box_xywh[2] - box_xywh[0]
|
| 161 |
+
# box_xywh[3] = box_xywh[3] - box_xywh[1]
|
| 162 |
+
# return box_xywh
|
| 163 |
+
|
| 164 |
+
# def get_seg_img(mask, box, image):
|
| 165 |
+
# image = image.copy()
|
| 166 |
+
# x, y, w, h = box
|
| 167 |
+
# # image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8)
|
| 168 |
+
# box_area = w * h
|
| 169 |
+
# mask_area = mask.sum()
|
| 170 |
+
# if 1 - (mask_area / box_area) < 0.2:
|
| 171 |
+
# image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8)
|
| 172 |
+
# else:
|
| 173 |
+
# random_values = np.random.randint(0, 255, size=image.shape, dtype=np.uint8)
|
| 174 |
+
# image[mask == 0] = random_values[mask == 0]
|
| 175 |
+
# seg_img = image[y:y+h, x:x+w, ...]
|
| 176 |
+
# return seg_img
|
| 177 |
+
|
| 178 |
+
# def pad_img(img):
|
| 179 |
+
# h, w, _ = img.shape
|
| 180 |
+
# l = max(w,h)
|
| 181 |
+
# pad = np.zeros((l,l,3), dtype=np.uint8) #
|
| 182 |
+
# if h > w:
|
| 183 |
+
# pad[:,(h-w)//2:(h-w)//2 + w, :] = img
|
| 184 |
+
# else:
|
| 185 |
+
# pad[(w-h)//2:(w-h)//2 + h, :, :] = img
|
| 186 |
+
# return pad
|
| 187 |
+
|
| 188 |
+
# def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
|
| 189 |
+
# assert len(args) > 0 and all(
|
| 190 |
+
# len(a) == len(args[0]) for a in args
|
| 191 |
+
# ), "Batched iteration must have inputs of all the same size."
|
| 192 |
+
# n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
|
| 193 |
+
# for b in range(n_batches):
|
| 194 |
+
# yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
|
| 195 |
+
|
| 196 |
+
# def slerp(u1, u2, t):
|
| 197 |
+
# """
|
| 198 |
+
# Perform spherical linear interpolation (Slerp) between two unit vectors.
|
| 199 |
|
| 200 |
+
# Args:
|
| 201 |
+
# - u1 (torch.Tensor): First unit vector, shape (1024,)
|
| 202 |
+
# - u2 (torch.Tensor): Second unit vector, shape (1024,)
|
| 203 |
+
# - t (float): Interpolation parameter
|
| 204 |
|
| 205 |
+
# Returns:
|
| 206 |
+
# - torch.Tensor: Interpolated vector, shape (1024,)
|
| 207 |
+
# """
|
| 208 |
+
# # Compute the dot product
|
| 209 |
+
# dot_product = torch.sum(u1 * u2)
|
| 210 |
|
| 211 |
+
# # Ensure the dot product is within the valid range [-1, 1]
|
| 212 |
+
# dot_product = torch.clamp(dot_product, -1.0, 1.0)
|
| 213 |
|
| 214 |
+
# # Compute the angle between the vectors
|
| 215 |
+
# theta = torch.acos(dot_product)
|
| 216 |
|
| 217 |
+
# # Compute the coefficients for the interpolation
|
| 218 |
+
# sin_theta = torch.sin(theta)
|
| 219 |
+
# if sin_theta == 0:
|
| 220 |
+
# # Vectors are parallel, return a linear interpolation
|
| 221 |
+
# return u1 + t * (u2 - u1)
|
| 222 |
|
| 223 |
+
# s1 = torch.sin((1 - t) * theta) / sin_theta
|
| 224 |
+
# s2 = torch.sin(t * theta) / sin_theta
|
| 225 |
|
| 226 |
+
# # Perform the interpolation
|
| 227 |
+
# return s1 * u1 + s2 * u2
|
| 228 |
|
| 229 |
+
# def slerp_multiple(vectors, t_values):
|
| 230 |
+
# """
|
| 231 |
+
# Perform spherical linear interpolation (Slerp) for multiple vectors.
|
| 232 |
|
| 233 |
+
# Args:
|
| 234 |
+
# - vectors (torch.Tensor): Tensor of vectors, shape (n, 1024)
|
| 235 |
+
# - a_values (torch.Tensor): Tensor of values corresponding to each vector, shape (n,)
|
| 236 |
|
| 237 |
+
# Returns:
|
| 238 |
+
# - torch.Tensor: Interpolated vector, shape (1024,)
|
| 239 |
+
# """
|
| 240 |
+
# n = vectors.shape[0]
|
| 241 |
|
| 242 |
+
# # Initialize the interpolated vector with the first vector
|
| 243 |
+
# interpolated_vector = vectors[0]
|
| 244 |
|
| 245 |
+
# # Perform Slerp iteratively
|
| 246 |
+
# for i in range(1, n):
|
| 247 |
+
# # Perform Slerp between the current interpolated vector and the next vector
|
| 248 |
+
# t = t_values[i] / (t_values[i] + t_values[i-1])
|
| 249 |
+
# interpolated_vector = slerp(interpolated_vector, vectors[i], t)
|
| 250 |
|
| 251 |
+
# return interpolated_vector
|
| 252 |
|
| 253 |
+
# @torch.no_grad
|
| 254 |
+
# def get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_image, yolov8_image, original_size, input_size, transform):
|
| 255 |
|
| 256 |
+
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 257 |
|
| 258 |
|
| 259 |
+
# sam_mask=[]
|
| 260 |
+
# img_area = original_size[0] * original_size[1]
|
| 261 |
|
| 262 |
+
# obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=1024,conf=0.25,iou=0.95,verbose=False)
|
| 263 |
+
# input_boxes1 = obj_results[0].boxes.xyxy
|
| 264 |
+
# input_boxes1 = input_boxes1.cpu().numpy()
|
| 265 |
+
# input_boxes1 = transform.apply_boxes(input_boxes1, original_size)
|
| 266 |
+
# input_boxes = torch.from_numpy(input_boxes1).to(device)
|
| 267 |
|
| 268 |
+
# # obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=512,conf=0.25,iou=0.9,verbose=False)
|
| 269 |
+
# # input_boxes2 = obj_results[0].boxes.xyxy
|
| 270 |
+
# # input_boxes2 = input_boxes2.cpu().numpy()
|
| 271 |
+
# # input_boxes2 = transform.apply_boxes(input_boxes2, original_size)
|
| 272 |
+
# # input_boxes2 = torch.from_numpy(input_boxes2).to(device)
|
| 273 |
+
|
| 274 |
+
# # input_boxes = torch.cat((input_boxes1, input_boxes2), dim=0)
|
| 275 |
+
|
| 276 |
+
# input_image = mobilesamv2.preprocess(sam1_image)
|
| 277 |
+
# image_embedding = mobilesamv2.image_encoder(input_image)['last_hidden_state']
|
| 278 |
+
|
| 279 |
+
# image_embedding=torch.repeat_interleave(image_embedding, 320, dim=0)
|
| 280 |
+
# prompt_embedding=mobilesamv2.prompt_encoder.get_dense_pe()
|
| 281 |
+
# prompt_embedding=torch.repeat_interleave(prompt_embedding, 320, dim=0)
|
| 282 |
+
# for (boxes,) in batch_iterator(320, input_boxes):
|
| 283 |
+
# with torch.no_grad():
|
| 284 |
+
# image_embedding=image_embedding[0:boxes.shape[0],:,:,:]
|
| 285 |
+
# prompt_embedding=prompt_embedding[0:boxes.shape[0],:,:,:]
|
| 286 |
+
# sparse_embeddings, dense_embeddings = mobilesamv2.prompt_encoder(
|
| 287 |
+
# points=None,
|
| 288 |
+
# boxes=boxes,
|
| 289 |
+
# masks=None,)
|
| 290 |
+
# low_res_masks, _ = mobilesamv2.mask_decoder(
|
| 291 |
+
# image_embeddings=image_embedding,
|
| 292 |
+
# image_pe=prompt_embedding,
|
| 293 |
+
# sparse_prompt_embeddings=sparse_embeddings,
|
| 294 |
+
# dense_prompt_embeddings=dense_embeddings,
|
| 295 |
+
# multimask_output=False,
|
| 296 |
+
# simple_type=True,
|
| 297 |
+
# )
|
| 298 |
+
# low_res_masks=mobilesamv2.postprocess_masks(low_res_masks, input_size, original_size)
|
| 299 |
+
# sam_mask_pre = (low_res_masks > mobilesamv2.mask_threshold)
|
| 300 |
+
# for mask in sam_mask_pre:
|
| 301 |
+
# if mask.sum() / img_area > 0.002:
|
| 302 |
+
# sam_mask.append(mask.squeeze(1))
|
| 303 |
+
# sam_mask=torch.cat(sam_mask)
|
| 304 |
+
# sorted_sam_mask = sorted(sam_mask, key=(lambda x: x.sum()), reverse=True)
|
| 305 |
+
# keep = mask_nms(sorted_sam_mask)
|
| 306 |
+
# ret_mask = filter(sorted_sam_mask, keep)
|
| 307 |
+
|
| 308 |
+
# return ret_mask
|
| 309 |
+
|
| 310 |
+
# @torch.no_grad
|
| 311 |
+
# def get_cog_feats(images, sam2, siglip, siglip_processor, yolov8, mobilesamv2):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
|
| 313 |
+
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 314 |
+
|
| 315 |
+
# cog_seg_maps = []
|
| 316 |
+
# rev_cog_seg_maps = []
|
| 317 |
+
# inference_state = sam2.init_state(images=images.sam2_images, video_height=images.sam2_video_size[0], video_width=images.sam2_video_size[1])
|
| 318 |
+
# mask_num = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
|
| 320 |
+
# sam1_images = images.sam1_images
|
| 321 |
+
# sam1_images_size = images.sam1_images_size
|
| 322 |
+
# np_images = images.np_images
|
| 323 |
+
# np_images_size = images.np_images_size
|
| 324 |
+
|
| 325 |
+
# sam1_masks = get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_images[0], np_images[0], np_images_size[0], sam1_images_size[0], images.sam1_transform)
|
| 326 |
+
# for mask in sam1_masks:
|
| 327 |
+
# _, _, _ = sam2.add_new_mask(
|
| 328 |
+
# inference_state=inference_state,
|
| 329 |
+
# frame_idx=0,
|
| 330 |
+
# obj_id=mask_num,
|
| 331 |
+
# mask=mask,
|
| 332 |
+
# )
|
| 333 |
+
# mask_num += 1
|
| 334 |
+
|
| 335 |
+
# video_segments = {} # video_segments contains the per-frame segmentation results
|
| 336 |
+
# for out_frame_idx, out_obj_ids, out_mask_logits in sam2.propagate_in_video(inference_state):
|
| 337 |
+
# sam2_masks = (out_mask_logits > 0.0).squeeze(1)
|
| 338 |
+
|
| 339 |
+
# video_segments[out_frame_idx] = {
|
| 340 |
+
# out_obj_id: sam2_masks[i].cpu().numpy()
|
| 341 |
+
# for i, out_obj_id in enumerate(out_obj_ids)
|
| 342 |
+
# }
|
| 343 |
+
|
| 344 |
+
# if out_frame_idx == 0:
|
| 345 |
+
# continue
|
| 346 |
+
|
| 347 |
+
# sam1_masks = get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_images[out_frame_idx], np_images[out_frame_idx], np_images_size[out_frame_idx], sam1_images_size[out_frame_idx], images.sam1_transform)
|
| 348 |
+
|
| 349 |
+
# for sam1_mask in sam1_masks:
|
| 350 |
+
# flg = 1
|
| 351 |
+
# for sam2_mask in sam2_masks:
|
| 352 |
+
# # print(sam1_mask.shape, sam2_mask.shape)
|
| 353 |
+
# area1 = sam1_mask.sum()
|
| 354 |
+
# area2 = sam2_mask.sum()
|
| 355 |
+
# intersection = (sam1_mask & sam2_mask).sum()
|
| 356 |
+
# if min(intersection / area1, intersection / area2) > 0.25:
|
| 357 |
+
# flg = 0
|
| 358 |
+
# break
|
| 359 |
+
# if flg:
|
| 360 |
+
# video_segments[out_frame_idx][mask_num] = sam1_mask.cpu().numpy()
|
| 361 |
+
# mask_num += 1
|
| 362 |
+
|
| 363 |
+
# multi_view_clip_feats = torch.zeros((mask_num+1, 1024))
|
| 364 |
+
# multi_view_clip_feats_map = {}
|
| 365 |
+
# multi_view_clip_area_map = {}
|
| 366 |
+
# for now_frame in range(0, len(video_segments), 1):
|
| 367 |
+
# image = np_images[now_frame]
|
| 368 |
+
|
| 369 |
+
# seg_img_list = []
|
| 370 |
+
# out_obj_id_list = []
|
| 371 |
+
# out_obj_mask_list = []
|
| 372 |
+
# out_obj_area_list = []
|
| 373 |
+
# # NOTE: background: -1
|
| 374 |
+
# rev_seg_map = -np.ones(image.shape[:2], dtype=np.int64)
|
| 375 |
+
# sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=False)
|
| 376 |
+
# for out_obj_id, mask in sorted_dict_items:
|
| 377 |
+
# if mask.sum() == 0:
|
| 378 |
+
# continue
|
| 379 |
+
# rev_seg_map[mask] = out_obj_id
|
| 380 |
+
# rev_cog_seg_maps.append(rev_seg_map)
|
| 381 |
+
|
| 382 |
+
# seg_map = -np.ones(image.shape[:2], dtype=np.int64)
|
| 383 |
+
# sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=True)
|
| 384 |
+
# for out_obj_id, mask in sorted_dict_items:
|
| 385 |
+
# if mask.sum() == 0:
|
| 386 |
+
# continue
|
| 387 |
+
# box = np.int32(box_xyxy_to_xywh(mask_to_box(mask)))
|
| 388 |
|
| 389 |
+
# if box[2] == 0 and box[3] == 0:
|
| 390 |
+
# continue
|
| 391 |
+
# # print(box)
|
| 392 |
+
# seg_img = get_seg_img(mask, box, image)
|
| 393 |
+
# pad_seg_img = cv2.resize(pad_img(seg_img), (256,256))
|
| 394 |
+
# seg_img_list.append(pad_seg_img)
|
| 395 |
+
# seg_map[mask] = out_obj_id
|
| 396 |
+
# out_obj_id_list.append(out_obj_id)
|
| 397 |
+
# out_obj_area_list.append(np.count_nonzero(mask))
|
| 398 |
+
# out_obj_mask_list.append(mask)
|
| 399 |
+
|
| 400 |
+
# if len(seg_img_list) == 0:
|
| 401 |
+
# cog_seg_maps.append(seg_map)
|
| 402 |
+
# continue
|
| 403 |
+
|
| 404 |
+
# seg_imgs = np.stack(seg_img_list, axis=0) # b,H,W,3
|
| 405 |
+
# seg_imgs = torch.from_numpy(seg_imgs).permute(0,3,1,2) # / 255.0
|
| 406 |
|
| 407 |
+
# inputs = siglip_processor(images=seg_imgs, return_tensors="pt")
|
| 408 |
+
# inputs = {key: value.to(device) for key, value in inputs.items()}
|
| 409 |
|
| 410 |
+
# image_features = siglip.get_image_features(**inputs)
|
| 411 |
+
# image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
| 412 |
+
# image_features = image_features.detach().cpu()
|
| 413 |
+
|
| 414 |
+
# for i in range(len(out_obj_mask_list)):
|
| 415 |
+
# for j in range(i + 1, len(out_obj_mask_list)):
|
| 416 |
+
# mask1 = out_obj_mask_list[i]
|
| 417 |
+
# mask2 = out_obj_mask_list[j]
|
| 418 |
+
# intersection = np.logical_and(mask1, mask2).sum()
|
| 419 |
+
# area1 = out_obj_area_list[i]
|
| 420 |
+
# area2 = out_obj_area_list[j]
|
| 421 |
+
# if min(intersection / area1, intersection / area2) > 0.025:
|
| 422 |
+
# conf1 = area1 / (area1 + area2)
|
| 423 |
+
# # conf2 = area2 / (area1 + area2)
|
| 424 |
+
# image_features[j] = slerp(image_features[j], image_features[i], conf1)
|
| 425 |
+
|
| 426 |
+
# for i, clip_feat in enumerate(image_features):
|
| 427 |
+
# id = out_obj_id_list[i]
|
| 428 |
+
# if id in multi_view_clip_feats_map.keys():
|
| 429 |
+
# multi_view_clip_feats_map[id].append(clip_feat)
|
| 430 |
+
# multi_view_clip_area_map[id].append(out_obj_area_list[i])
|
| 431 |
+
# else:
|
| 432 |
+
# multi_view_clip_feats_map[id] = [clip_feat]
|
| 433 |
+
# multi_view_clip_area_map[id] = [out_obj_area_list[i]]
|
| 434 |
+
|
| 435 |
+
# cog_seg_maps.append(seg_map)
|
| 436 |
+
# del image_features
|
| 437 |
|
| 438 |
+
# for i in range(mask_num):
|
| 439 |
+
# if i in multi_view_clip_feats_map.keys():
|
| 440 |
+
# clip_feats = multi_view_clip_feats_map[i]
|
| 441 |
+
# mask_area = multi_view_clip_area_map[i]
|
| 442 |
+
# multi_view_clip_feats[i] = slerp_multiple(torch.stack(clip_feats), np.stack(mask_area))
|
| 443 |
+
# else:
|
| 444 |
+
# multi_view_clip_feats[i] = torch.zeros((1024))
|
| 445 |
+
# multi_view_clip_feats[mask_num] = torch.zeros((1024))
|
| 446 |
|
| 447 |
+
# return cog_seg_maps, rev_cog_seg_maps, multi_view_clip_feats
|
| 448 |
|
| 449 |
|
| 450 |
@spaces.GPU(duration=60)
|
| 451 |
+
def get_reconstructed_scene(outdir, filelist, schedule='linear', niter=300, min_conf_thr=3.0,
|
| 452 |
+
as_pointcloud=True, mask_sky=False, clean_depth=True, transparent_cams=True, cam_size=0.05,
|
| 453 |
+
scenegraph_type='complete', winsize=1, refid=0):
|
| 454 |
"""
|
| 455 |
from a list of images, run dust3r inference, global aligner.
|
| 456 |
then run get_3D_model_from_scene
|
| 457 |
"""
|
| 458 |
|
| 459 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 460 |
|
| 461 |
MAST3R_CKP = 'naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric'
|
| 462 |
mast3r = AsymmetricMASt3R.from_pretrained(MAST3R_CKP).to(device)
|
| 463 |
|
| 464 |
+
# sam2 = SAM2VideoPredictor.from_pretrained('facebook/sam2.1-hiera-large', device=device)
|
| 465 |
|
| 466 |
+
# siglip = AutoModel.from_pretrained("google/siglip-large-patch16-256", device_map=device)
|
| 467 |
+
# siglip_processor = AutoProcessor.from_pretrained("google/siglip-large-patch16-256")
|
| 468 |
|
| 469 |
+
# SAM1_DECODER_CKP = './checkpoints/Prompt_guided_Mask_Decoder.pt'
|
| 470 |
+
# mobilesamv2 = sam_model_registry['sam_vit_h'](None)
|
| 471 |
+
# sam1 = SamModel.from_pretrained('facebook/sam-vit-huge')
|
| 472 |
+
# image_encoder = sam1.vision_encoder
|
| 473 |
|
| 474 |
+
# prompt_encoder, mask_decoder = sam_model_registry['prompt_guided_decoder'](SAM1_DECODER_CKP)
|
| 475 |
+
# mobilesamv2.prompt_encoder = prompt_encoder
|
| 476 |
+
# mobilesamv2.mask_decoder = mask_decoder
|
| 477 |
+
# mobilesamv2.image_encoder=image_encoder
|
| 478 |
+
# mobilesamv2.to(device=device)
|
| 479 |
+
# mobilesamv2.eval()
|
| 480 |
|
| 481 |
+
# YOLO8_CKP='./checkpoints/ObjectAwareModel.pt'
|
| 482 |
+
# yolov8 = ObjectAwareModel(YOLO8_CKP)
|
| 483 |
|
| 484 |
if len(filelist) < 2:
|
| 485 |
raise gradio.Error("Please input at least 2 images.")
|
|
|
|
| 487 |
images = Images(filelist=filelist, device=device)
|
| 488 |
|
| 489 |
# try:
|
| 490 |
+
# cog_seg_maps, rev_cog_seg_maps, cog_feats = get_cog_feats(images, sam2, siglip, siglip_processor, yolov8, mobilesamv2)
|
| 491 |
+
# imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
|
| 492 |
# except Exception as e:
|
| 493 |
+
rev_cog_seg_maps = []
|
| 494 |
+
for tmp_img in images.np_images:
|
| 495 |
+
rev_seg_map = -np.ones(tmp_img.shape[:2], dtype=np.int64)
|
| 496 |
+
rev_cog_seg_maps.append(rev_seg_map)
|
| 497 |
+
cog_seg_maps = rev_cog_seg_maps
|
| 498 |
+
cog_feats = torch.zeros((1, 1024))
|
| 499 |
+
imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
|
| 500 |
|
| 501 |
if len(imgs) == 1:
|
| 502 |
imgs = [imgs[0], copy.deepcopy(imgs[0])]
|
|
|
|
| 539 |
|
| 540 |
scene.to('cpu')
|
| 541 |
torch.cuda.empty_cache()
|
|
|
|
| 542 |
return scene, outfile
|
| 543 |
|
| 544 |
# @spaces.GPU(duration=60)
|
|
|
|
| 573 |
gradio.HTML('<h2 style="text-align: center;">PE3R Demo</h2>')
|
| 574 |
with gradio.Column():
|
| 575 |
inputfiles = gradio.File(file_count="multiple")
|
| 576 |
+
# with gradio.Row():
|
| 577 |
+
# schedule = gradio.Dropdown(["linear", "cosine"],
|
| 578 |
+
# value='linear', label="schedule", info="For global alignment!",
|
| 579 |
+
# visible=False)
|
| 580 |
+
# niter = gradio.Number(value=300, precision=0, minimum=0, maximum=5000,
|
| 581 |
+
# label="num_iterations", info="For global alignment!",
|
| 582 |
+
# visible=False)
|
| 583 |
+
# scenegraph_type = gradio.Dropdown([("complete: all possible image pairs", "complete"),
|
| 584 |
+
# ("swin: sliding window", "swin"),
|
| 585 |
+
# ("oneref: match one image with all", "oneref")],
|
| 586 |
+
# value='complete', label="Scenegraph",
|
| 587 |
+
# info="Define how to make pairs",
|
| 588 |
+
# interactive=True,
|
| 589 |
+
# visible=False)
|
| 590 |
+
# winsize = gradio.Slider(label="Scene Graph: Window Size", value=1,
|
| 591 |
+
# minimum=1, maximum=1, step=1, visible=False)
|
| 592 |
+
# refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, maximum=0, step=1, visible=False)
|
| 593 |
|
| 594 |
run_btn = gradio.Button("Reconstruct")
|
| 595 |
|
| 596 |
+
# with gradio.Row():
|
| 597 |
# adjust the confidence threshold
|
| 598 |
+
# min_conf_thr = gradio.Slider(label="min_conf_thr", value=3.0, minimum=1.0, maximum=20, step=0.1, visible=False)
|
| 599 |
# adjust the camera size in the output pointcloud
|
| 600 |
+
# cam_size = gradio.Slider(label="cam_size", value=0.05, minimum=0.001, maximum=0.1, step=0.001, visible=False)
|
| 601 |
+
# with gradio.Row():
|
| 602 |
+
# as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud", visible=False)
|
| 603 |
# two post process implemented
|
| 604 |
+
# mask_sky = gradio.Checkbox(value=False, label="Mask sky", visible=False)
|
| 605 |
+
# clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps", visible=False)
|
| 606 |
+
# transparent_cams = gradio.Checkbox(value=True, label="Transparent cameras", visible=False)
|
| 607 |
|
| 608 |
with gradio.Row():
|
| 609 |
text_input = gradio.Textbox(label="Query Text")
|
|
|
|
| 615 |
# events
|
| 616 |
|
| 617 |
run_btn.click(fn=recon_fun,
|
| 618 |
+
inputs=[inputfiles],
|
|
|
|
|
|
|
| 619 |
outputs=[scene, outmodel]) # , outgallery
|
| 620 |
|
| 621 |
# find_btn.click(fn=get_3D_object_from_scene_fun,
|