Spaces:
Running
Running
Update to use diffusers
Browse files- README.md +1 -1
- gradio_canny2image.py +41 -33
- gradio_depth2image.py +28 -22
- gradio_fake_scribble2image.py +28 -22
- gradio_hed2image.py +28 -22
- gradio_hough2image.py +32 -25
- gradio_normal2image.py +29 -23
- gradio_pose2image.py +28 -22
- gradio_scribble2image.py +27 -22
- gradio_scribble2image_interactive.py +27 -22
- gradio_seg2image.py +28 -22
- model.py +559 -708
- requirements.txt +3 -1
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: 🌖
|
|
| 4 |
colorFrom: pink
|
| 5 |
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
python_version: 3.10.9
|
| 9 |
app_file: app.py
|
| 10 |
pinned: false
|
|
|
|
| 4 |
colorFrom: pink
|
| 5 |
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.20.0
|
| 8 |
python_version: 3.10.9
|
| 9 |
app_file: app.py
|
| 10 |
pinned: false
|
gradio_canny2image.py
CHANGED
|
@@ -23,33 +23,33 @@ def create_demo(process, max_images=12):
|
|
| 23 |
maximum=768,
|
| 24 |
value=512,
|
| 25 |
step=256)
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
| 46 |
seed = gr.Slider(label='Seed',
|
| 47 |
minimum=-1,
|
| 48 |
maximum=2147483647,
|
| 49 |
step=1,
|
| 50 |
-
randomize=True
|
| 51 |
-
queue=False)
|
| 52 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
| 53 |
a_prompt = gr.Textbox(
|
| 54 |
label='Added Prompt',
|
| 55 |
value='best quality, extremely detailed')
|
|
@@ -59,17 +59,25 @@ def create_demo(process, max_images=12):
|
|
| 59 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 60 |
)
|
| 61 |
with gr.Column():
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
input_image,
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
]
|
| 71 |
run_button.click(fn=process,
|
| 72 |
-
inputs=
|
| 73 |
-
outputs=
|
| 74 |
api_name='canny')
|
| 75 |
return demo
|
|
|
|
| 23 |
maximum=768,
|
| 24 |
value=512,
|
| 25 |
step=256)
|
| 26 |
+
canny_low_threshold = gr.Slider(
|
| 27 |
+
label='Canny low threshold',
|
| 28 |
+
minimum=1,
|
| 29 |
+
maximum=255,
|
| 30 |
+
value=100,
|
| 31 |
+
step=1)
|
| 32 |
+
canny_high_threshold = gr.Slider(
|
| 33 |
+
label='Canny high threshold',
|
| 34 |
+
minimum=1,
|
| 35 |
+
maximum=255,
|
| 36 |
+
value=200,
|
| 37 |
+
step=1)
|
| 38 |
+
num_steps = gr.Slider(label='Steps',
|
| 39 |
+
minimum=1,
|
| 40 |
+
maximum=100,
|
| 41 |
+
value=20,
|
| 42 |
+
step=1)
|
| 43 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
| 44 |
+
minimum=0.1,
|
| 45 |
+
maximum=30.0,
|
| 46 |
+
value=9.0,
|
| 47 |
+
step=0.1)
|
| 48 |
seed = gr.Slider(label='Seed',
|
| 49 |
minimum=-1,
|
| 50 |
maximum=2147483647,
|
| 51 |
step=1,
|
| 52 |
+
randomize=True)
|
|
|
|
|
|
|
| 53 |
a_prompt = gr.Textbox(
|
| 54 |
label='Added Prompt',
|
| 55 |
value='best quality, extremely detailed')
|
|
|
|
| 59 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 60 |
)
|
| 61 |
with gr.Column():
|
| 62 |
+
result = gr.Gallery(label='Output',
|
| 63 |
+
show_label=False,
|
| 64 |
+
elem_id='gallery').style(grid=2,
|
| 65 |
+
height='auto')
|
| 66 |
+
inputs = [
|
| 67 |
+
input_image,
|
| 68 |
+
prompt,
|
| 69 |
+
a_prompt,
|
| 70 |
+
n_prompt,
|
| 71 |
+
num_samples,
|
| 72 |
+
image_resolution,
|
| 73 |
+
num_steps,
|
| 74 |
+
guidance_scale,
|
| 75 |
+
seed,
|
| 76 |
+
canny_low_threshold,
|
| 77 |
+
canny_high_threshold,
|
| 78 |
]
|
| 79 |
run_button.click(fn=process,
|
| 80 |
+
inputs=inputs,
|
| 81 |
+
outputs=result,
|
| 82 |
api_name='canny')
|
| 83 |
return demo
|
gradio_depth2image.py
CHANGED
|
@@ -28,23 +28,21 @@ def create_demo(process, max_images=12):
|
|
| 28 |
maximum=1024,
|
| 29 |
value=384,
|
| 30 |
step=1)
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
seed = gr.Slider(label='Seed',
|
| 42 |
minimum=-1,
|
| 43 |
maximum=2147483647,
|
| 44 |
step=1,
|
| 45 |
-
randomize=True
|
| 46 |
-
queue=False)
|
| 47 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
| 48 |
a_prompt = gr.Textbox(
|
| 49 |
label='Added Prompt',
|
| 50 |
value='best quality, extremely detailed')
|
|
@@ -54,16 +52,24 @@ def create_demo(process, max_images=12):
|
|
| 54 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 55 |
)
|
| 56 |
with gr.Column():
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
input_image,
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
]
|
| 65 |
run_button.click(fn=process,
|
| 66 |
-
inputs=
|
| 67 |
-
outputs=
|
| 68 |
api_name='depth')
|
| 69 |
return demo
|
|
|
|
| 28 |
maximum=1024,
|
| 29 |
value=384,
|
| 30 |
step=1)
|
| 31 |
+
num_steps = gr.Slider(label='Steps',
|
| 32 |
+
minimum=1,
|
| 33 |
+
maximum=100,
|
| 34 |
+
value=20,
|
| 35 |
+
step=1)
|
| 36 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
| 37 |
+
minimum=0.1,
|
| 38 |
+
maximum=30.0,
|
| 39 |
+
value=9.0,
|
| 40 |
+
step=0.1)
|
| 41 |
seed = gr.Slider(label='Seed',
|
| 42 |
minimum=-1,
|
| 43 |
maximum=2147483647,
|
| 44 |
step=1,
|
| 45 |
+
randomize=True)
|
|
|
|
|
|
|
| 46 |
a_prompt = gr.Textbox(
|
| 47 |
label='Added Prompt',
|
| 48 |
value='best quality, extremely detailed')
|
|
|
|
| 52 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 53 |
)
|
| 54 |
with gr.Column():
|
| 55 |
+
result = gr.Gallery(label='Output',
|
| 56 |
+
show_label=False,
|
| 57 |
+
elem_id='gallery').style(grid=2,
|
| 58 |
+
height='auto')
|
| 59 |
+
inputs = [
|
| 60 |
+
input_image,
|
| 61 |
+
prompt,
|
| 62 |
+
a_prompt,
|
| 63 |
+
n_prompt,
|
| 64 |
+
num_samples,
|
| 65 |
+
image_resolution,
|
| 66 |
+
detect_resolution,
|
| 67 |
+
num_steps,
|
| 68 |
+
guidance_scale,
|
| 69 |
+
seed,
|
| 70 |
]
|
| 71 |
run_button.click(fn=process,
|
| 72 |
+
inputs=inputs,
|
| 73 |
+
outputs=result,
|
| 74 |
api_name='depth')
|
| 75 |
return demo
|
gradio_fake_scribble2image.py
CHANGED
|
@@ -28,23 +28,21 @@ def create_demo(process, max_images=12):
|
|
| 28 |
maximum=1024,
|
| 29 |
value=512,
|
| 30 |
step=1)
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
seed = gr.Slider(label='Seed',
|
| 42 |
minimum=-1,
|
| 43 |
maximum=2147483647,
|
| 44 |
step=1,
|
| 45 |
-
randomize=True
|
| 46 |
-
queue=False)
|
| 47 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
| 48 |
a_prompt = gr.Textbox(
|
| 49 |
label='Added Prompt',
|
| 50 |
value='best quality, extremely detailed')
|
|
@@ -54,16 +52,24 @@ def create_demo(process, max_images=12):
|
|
| 54 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 55 |
)
|
| 56 |
with gr.Column():
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
input_image,
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
]
|
| 65 |
run_button.click(fn=process,
|
| 66 |
-
inputs=
|
| 67 |
-
outputs=
|
| 68 |
api_name='fake_scribble')
|
| 69 |
return demo
|
|
|
|
| 28 |
maximum=1024,
|
| 29 |
value=512,
|
| 30 |
step=1)
|
| 31 |
+
num_steps = gr.Slider(label='Steps',
|
| 32 |
+
minimum=1,
|
| 33 |
+
maximum=100,
|
| 34 |
+
value=20,
|
| 35 |
+
step=1)
|
| 36 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
| 37 |
+
minimum=0.1,
|
| 38 |
+
maximum=30.0,
|
| 39 |
+
value=9.0,
|
| 40 |
+
step=0.1)
|
| 41 |
seed = gr.Slider(label='Seed',
|
| 42 |
minimum=-1,
|
| 43 |
maximum=2147483647,
|
| 44 |
step=1,
|
| 45 |
+
randomize=True)
|
|
|
|
|
|
|
| 46 |
a_prompt = gr.Textbox(
|
| 47 |
label='Added Prompt',
|
| 48 |
value='best quality, extremely detailed')
|
|
|
|
| 52 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 53 |
)
|
| 54 |
with gr.Column():
|
| 55 |
+
result = gr.Gallery(label='Output',
|
| 56 |
+
show_label=False,
|
| 57 |
+
elem_id='gallery').style(grid=2,
|
| 58 |
+
height='auto')
|
| 59 |
+
inputs = [
|
| 60 |
+
input_image,
|
| 61 |
+
prompt,
|
| 62 |
+
a_prompt,
|
| 63 |
+
n_prompt,
|
| 64 |
+
num_samples,
|
| 65 |
+
image_resolution,
|
| 66 |
+
detect_resolution,
|
| 67 |
+
num_steps,
|
| 68 |
+
guidance_scale,
|
| 69 |
+
seed,
|
| 70 |
]
|
| 71 |
run_button.click(fn=process,
|
| 72 |
+
inputs=inputs,
|
| 73 |
+
outputs=result,
|
| 74 |
api_name='fake_scribble')
|
| 75 |
return demo
|
gradio_hed2image.py
CHANGED
|
@@ -28,23 +28,21 @@ def create_demo(process, max_images=12):
|
|
| 28 |
maximum=1024,
|
| 29 |
value=512,
|
| 30 |
step=1)
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
seed = gr.Slider(label='Seed',
|
| 42 |
minimum=-1,
|
| 43 |
maximum=2147483647,
|
| 44 |
step=1,
|
| 45 |
-
randomize=True
|
| 46 |
-
queue=False)
|
| 47 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
| 48 |
a_prompt = gr.Textbox(
|
| 49 |
label='Added Prompt',
|
| 50 |
value='best quality, extremely detailed')
|
|
@@ -54,16 +52,24 @@ def create_demo(process, max_images=12):
|
|
| 54 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 55 |
)
|
| 56 |
with gr.Column():
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
input_image,
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
]
|
| 65 |
run_button.click(fn=process,
|
| 66 |
-
inputs=
|
| 67 |
-
outputs=
|
| 68 |
api_name='hed')
|
| 69 |
return demo
|
|
|
|
| 28 |
maximum=1024,
|
| 29 |
value=512,
|
| 30 |
step=1)
|
| 31 |
+
num_steps = gr.Slider(label='Steps',
|
| 32 |
+
minimum=1,
|
| 33 |
+
maximum=100,
|
| 34 |
+
value=20,
|
| 35 |
+
step=1)
|
| 36 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
| 37 |
+
minimum=0.1,
|
| 38 |
+
maximum=30.0,
|
| 39 |
+
value=9.0,
|
| 40 |
+
step=0.1)
|
| 41 |
seed = gr.Slider(label='Seed',
|
| 42 |
minimum=-1,
|
| 43 |
maximum=2147483647,
|
| 44 |
step=1,
|
| 45 |
+
randomize=True)
|
|
|
|
|
|
|
| 46 |
a_prompt = gr.Textbox(
|
| 47 |
label='Added Prompt',
|
| 48 |
value='best quality, extremely detailed')
|
|
|
|
| 52 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 53 |
)
|
| 54 |
with gr.Column():
|
| 55 |
+
result = gr.Gallery(label='Output',
|
| 56 |
+
show_label=False,
|
| 57 |
+
elem_id='gallery').style(grid=2,
|
| 58 |
+
height='auto')
|
| 59 |
+
inputs = [
|
| 60 |
+
input_image,
|
| 61 |
+
prompt,
|
| 62 |
+
a_prompt,
|
| 63 |
+
n_prompt,
|
| 64 |
+
num_samples,
|
| 65 |
+
image_resolution,
|
| 66 |
+
detect_resolution,
|
| 67 |
+
num_steps,
|
| 68 |
+
guidance_scale,
|
| 69 |
+
seed,
|
| 70 |
]
|
| 71 |
run_button.click(fn=process,
|
| 72 |
+
inputs=inputs,
|
| 73 |
+
outputs=result,
|
| 74 |
api_name='hed')
|
| 75 |
return demo
|
gradio_hough2image.py
CHANGED
|
@@ -28,35 +28,33 @@ def create_demo(process, max_images=12):
|
|
| 28 |
maximum=1024,
|
| 29 |
value=512,
|
| 30 |
step=1)
|
| 31 |
-
|
| 32 |
label='Hough value threshold (MLSD)',
|
| 33 |
minimum=0.01,
|
| 34 |
maximum=2.0,
|
| 35 |
value=0.1,
|
| 36 |
step=0.01)
|
| 37 |
-
|
| 38 |
label='Hough distance threshold (MLSD)',
|
| 39 |
minimum=0.01,
|
| 40 |
maximum=20.0,
|
| 41 |
value=0.1,
|
| 42 |
step=0.01)
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
seed = gr.Slider(label='Seed',
|
| 54 |
minimum=-1,
|
| 55 |
maximum=2147483647,
|
| 56 |
step=1,
|
| 57 |
-
randomize=True
|
| 58 |
-
queue=False)
|
| 59 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
| 60 |
a_prompt = gr.Textbox(
|
| 61 |
label='Added Prompt',
|
| 62 |
value='best quality, extremely detailed')
|
|
@@ -66,17 +64,26 @@ def create_demo(process, max_images=12):
|
|
| 66 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 67 |
)
|
| 68 |
with gr.Column():
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
input_image,
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
]
|
| 78 |
run_button.click(fn=process,
|
| 79 |
-
inputs=
|
| 80 |
-
outputs=
|
| 81 |
api_name='hough')
|
| 82 |
return demo
|
|
|
|
| 28 |
maximum=1024,
|
| 29 |
value=512,
|
| 30 |
step=1)
|
| 31 |
+
mlsd_value_threshold = gr.Slider(
|
| 32 |
label='Hough value threshold (MLSD)',
|
| 33 |
minimum=0.01,
|
| 34 |
maximum=2.0,
|
| 35 |
value=0.1,
|
| 36 |
step=0.01)
|
| 37 |
+
mlsd_distance_threshold = gr.Slider(
|
| 38 |
label='Hough distance threshold (MLSD)',
|
| 39 |
minimum=0.01,
|
| 40 |
maximum=20.0,
|
| 41 |
value=0.1,
|
| 42 |
step=0.01)
|
| 43 |
+
num_steps = gr.Slider(label='Steps',
|
| 44 |
+
minimum=1,
|
| 45 |
+
maximum=100,
|
| 46 |
+
value=20,
|
| 47 |
+
step=1)
|
| 48 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
| 49 |
+
minimum=0.1,
|
| 50 |
+
maximum=30.0,
|
| 51 |
+
value=9.0,
|
| 52 |
+
step=0.1)
|
| 53 |
seed = gr.Slider(label='Seed',
|
| 54 |
minimum=-1,
|
| 55 |
maximum=2147483647,
|
| 56 |
step=1,
|
| 57 |
+
randomize=True)
|
|
|
|
|
|
|
| 58 |
a_prompt = gr.Textbox(
|
| 59 |
label='Added Prompt',
|
| 60 |
value='best quality, extremely detailed')
|
|
|
|
| 64 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 65 |
)
|
| 66 |
with gr.Column():
|
| 67 |
+
result = gr.Gallery(label='Output',
|
| 68 |
+
show_label=False,
|
| 69 |
+
elem_id='gallery').style(grid=2,
|
| 70 |
+
height='auto')
|
| 71 |
+
inputs = [
|
| 72 |
+
input_image,
|
| 73 |
+
prompt,
|
| 74 |
+
a_prompt,
|
| 75 |
+
n_prompt,
|
| 76 |
+
num_samples,
|
| 77 |
+
image_resolution,
|
| 78 |
+
detect_resolution,
|
| 79 |
+
num_steps,
|
| 80 |
+
guidance_scale,
|
| 81 |
+
seed,
|
| 82 |
+
mlsd_value_threshold,
|
| 83 |
+
mlsd_distance_threshold,
|
| 84 |
]
|
| 85 |
run_button.click(fn=process,
|
| 86 |
+
inputs=inputs,
|
| 87 |
+
outputs=result,
|
| 88 |
api_name='hough')
|
| 89 |
return demo
|
gradio_normal2image.py
CHANGED
|
@@ -34,23 +34,21 @@ def create_demo(process, max_images=12):
|
|
| 34 |
maximum=1.0,
|
| 35 |
value=0.4,
|
| 36 |
step=0.01)
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
seed = gr.Slider(label='Seed',
|
| 48 |
minimum=-1,
|
| 49 |
maximum=2147483647,
|
| 50 |
step=1,
|
| 51 |
-
randomize=True
|
| 52 |
-
queue=False)
|
| 53 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
| 54 |
a_prompt = gr.Textbox(
|
| 55 |
label='Added Prompt',
|
| 56 |
value='best quality, extremely detailed')
|
|
@@ -60,17 +58,25 @@ def create_demo(process, max_images=12):
|
|
| 60 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 61 |
)
|
| 62 |
with gr.Column():
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
input_image,
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
]
|
| 72 |
run_button.click(fn=process,
|
| 73 |
-
inputs=
|
| 74 |
-
outputs=
|
| 75 |
api_name='normal')
|
| 76 |
return demo
|
|
|
|
| 34 |
maximum=1.0,
|
| 35 |
value=0.4,
|
| 36 |
step=0.01)
|
| 37 |
+
num_steps = gr.Slider(label='Steps',
|
| 38 |
+
minimum=1,
|
| 39 |
+
maximum=100,
|
| 40 |
+
value=20,
|
| 41 |
+
step=1)
|
| 42 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
| 43 |
+
minimum=0.1,
|
| 44 |
+
maximum=30.0,
|
| 45 |
+
value=9.0,
|
| 46 |
+
step=0.1)
|
| 47 |
seed = gr.Slider(label='Seed',
|
| 48 |
minimum=-1,
|
| 49 |
maximum=2147483647,
|
| 50 |
step=1,
|
| 51 |
+
randomize=True)
|
|
|
|
|
|
|
| 52 |
a_prompt = gr.Textbox(
|
| 53 |
label='Added Prompt',
|
| 54 |
value='best quality, extremely detailed')
|
|
|
|
| 58 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 59 |
)
|
| 60 |
with gr.Column():
|
| 61 |
+
result = gr.Gallery(label='Output',
|
| 62 |
+
show_label=False,
|
| 63 |
+
elem_id='gallery').style(grid=2,
|
| 64 |
+
height='auto')
|
| 65 |
+
inputs = [
|
| 66 |
+
input_image,
|
| 67 |
+
prompt,
|
| 68 |
+
a_prompt,
|
| 69 |
+
n_prompt,
|
| 70 |
+
num_samples,
|
| 71 |
+
image_resolution,
|
| 72 |
+
detect_resolution,
|
| 73 |
+
num_steps,
|
| 74 |
+
guidance_scale,
|
| 75 |
+
seed,
|
| 76 |
+
bg_threshold,
|
| 77 |
]
|
| 78 |
run_button.click(fn=process,
|
| 79 |
+
inputs=inputs,
|
| 80 |
+
outputs=result,
|
| 81 |
api_name='normal')
|
| 82 |
return demo
|
gradio_pose2image.py
CHANGED
|
@@ -28,23 +28,21 @@ def create_demo(process, max_images=12):
|
|
| 28 |
maximum=1024,
|
| 29 |
value=512,
|
| 30 |
step=1)
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
seed = gr.Slider(label='Seed',
|
| 42 |
minimum=-1,
|
| 43 |
maximum=2147483647,
|
| 44 |
step=1,
|
| 45 |
-
randomize=True
|
| 46 |
-
queue=False)
|
| 47 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
| 48 |
a_prompt = gr.Textbox(
|
| 49 |
label='Added Prompt',
|
| 50 |
value='best quality, extremely detailed')
|
|
@@ -54,16 +52,24 @@ def create_demo(process, max_images=12):
|
|
| 54 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 55 |
)
|
| 56 |
with gr.Column():
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
input_image,
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
]
|
| 65 |
run_button.click(fn=process,
|
| 66 |
-
inputs=
|
| 67 |
-
outputs=
|
| 68 |
api_name='pose')
|
| 69 |
return demo
|
|
|
|
| 28 |
maximum=1024,
|
| 29 |
value=512,
|
| 30 |
step=1)
|
| 31 |
+
num_steps = gr.Slider(label='Steps',
|
| 32 |
+
minimum=1,
|
| 33 |
+
maximum=100,
|
| 34 |
+
value=20,
|
| 35 |
+
step=1)
|
| 36 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
| 37 |
+
minimum=0.1,
|
| 38 |
+
maximum=30.0,
|
| 39 |
+
value=9.0,
|
| 40 |
+
step=0.1)
|
| 41 |
seed = gr.Slider(label='Seed',
|
| 42 |
minimum=-1,
|
| 43 |
maximum=2147483647,
|
| 44 |
step=1,
|
| 45 |
+
randomize=True)
|
|
|
|
|
|
|
| 46 |
a_prompt = gr.Textbox(
|
| 47 |
label='Added Prompt',
|
| 48 |
value='best quality, extremely detailed')
|
|
|
|
| 52 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 53 |
)
|
| 54 |
with gr.Column():
|
| 55 |
+
result = gr.Gallery(label='Output',
|
| 56 |
+
show_label=False,
|
| 57 |
+
elem_id='gallery').style(grid=2,
|
| 58 |
+
height='auto')
|
| 59 |
+
inputs = [
|
| 60 |
+
input_image,
|
| 61 |
+
prompt,
|
| 62 |
+
a_prompt,
|
| 63 |
+
n_prompt,
|
| 64 |
+
num_samples,
|
| 65 |
+
image_resolution,
|
| 66 |
+
detect_resolution,
|
| 67 |
+
num_steps,
|
| 68 |
+
guidance_scale,
|
| 69 |
+
seed,
|
| 70 |
]
|
| 71 |
run_button.click(fn=process,
|
| 72 |
+
inputs=inputs,
|
| 73 |
+
outputs=result,
|
| 74 |
api_name='pose')
|
| 75 |
return demo
|
gradio_scribble2image.py
CHANGED
|
@@ -23,23 +23,21 @@ def create_demo(process, max_images=12):
|
|
| 23 |
maximum=768,
|
| 24 |
value=512,
|
| 25 |
step=256)
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
seed = gr.Slider(label='Seed',
|
| 37 |
minimum=-1,
|
| 38 |
maximum=2147483647,
|
| 39 |
step=1,
|
| 40 |
-
randomize=True
|
| 41 |
-
queue=False)
|
| 42 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
| 43 |
a_prompt = gr.Textbox(
|
| 44 |
label='Added Prompt',
|
| 45 |
value='best quality, extremely detailed')
|
|
@@ -49,16 +47,23 @@ def create_demo(process, max_images=12):
|
|
| 49 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 50 |
)
|
| 51 |
with gr.Column():
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
input_image,
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
]
|
| 60 |
run_button.click(fn=process,
|
| 61 |
-
inputs=
|
| 62 |
-
outputs=
|
| 63 |
api_name='scribble')
|
| 64 |
return demo
|
|
|
|
| 23 |
maximum=768,
|
| 24 |
value=512,
|
| 25 |
step=256)
|
| 26 |
+
num_steps = gr.Slider(label='Steps',
|
| 27 |
+
minimum=1,
|
| 28 |
+
maximum=100,
|
| 29 |
+
value=20,
|
| 30 |
+
step=1)
|
| 31 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
| 32 |
+
minimum=0.1,
|
| 33 |
+
maximum=30.0,
|
| 34 |
+
value=9.0,
|
| 35 |
+
step=0.1)
|
| 36 |
seed = gr.Slider(label='Seed',
|
| 37 |
minimum=-1,
|
| 38 |
maximum=2147483647,
|
| 39 |
step=1,
|
| 40 |
+
randomize=True)
|
|
|
|
|
|
|
| 41 |
a_prompt = gr.Textbox(
|
| 42 |
label='Added Prompt',
|
| 43 |
value='best quality, extremely detailed')
|
|
|
|
| 47 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 48 |
)
|
| 49 |
with gr.Column():
|
| 50 |
+
result = gr.Gallery(label='Output',
|
| 51 |
+
show_label=False,
|
| 52 |
+
elem_id='gallery').style(grid=2,
|
| 53 |
+
height='auto')
|
| 54 |
+
inputs = [
|
| 55 |
+
input_image,
|
| 56 |
+
prompt,
|
| 57 |
+
a_prompt,
|
| 58 |
+
n_prompt,
|
| 59 |
+
num_samples,
|
| 60 |
+
image_resolution,
|
| 61 |
+
num_steps,
|
| 62 |
+
guidance_scale,
|
| 63 |
+
seed,
|
| 64 |
]
|
| 65 |
run_button.click(fn=process,
|
| 66 |
+
inputs=inputs,
|
| 67 |
+
outputs=result,
|
| 68 |
api_name='scribble')
|
| 69 |
return demo
|
gradio_scribble2image_interactive.py
CHANGED
|
@@ -37,7 +37,7 @@ def create_demo(process, max_images=12):
|
|
| 37 |
)
|
| 38 |
create_button.click(fn=create_canvas,
|
| 39 |
inputs=[canvas_width, canvas_height],
|
| 40 |
-
outputs=
|
| 41 |
queue=False)
|
| 42 |
prompt = gr.Textbox(label='Prompt')
|
| 43 |
run_button = gr.Button(label='Run')
|
|
@@ -52,23 +52,21 @@ def create_demo(process, max_images=12):
|
|
| 52 |
maximum=768,
|
| 53 |
value=512,
|
| 54 |
step=256)
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
seed = gr.Slider(label='Seed',
|
| 66 |
minimum=-1,
|
| 67 |
maximum=2147483647,
|
| 68 |
step=1,
|
| 69 |
-
randomize=True
|
| 70 |
-
queue=False)
|
| 71 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
| 72 |
a_prompt = gr.Textbox(
|
| 73 |
label='Added Prompt',
|
| 74 |
value='best quality, extremely detailed')
|
|
@@ -78,13 +76,20 @@ def create_demo(process, max_images=12):
|
|
| 78 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 79 |
)
|
| 80 |
with gr.Column():
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
input_image,
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
]
|
| 89 |
-
run_button.click(fn=process, inputs=
|
| 90 |
return demo
|
|
|
|
| 37 |
)
|
| 38 |
create_button.click(fn=create_canvas,
|
| 39 |
inputs=[canvas_width, canvas_height],
|
| 40 |
+
outputs=input_image,
|
| 41 |
queue=False)
|
| 42 |
prompt = gr.Textbox(label='Prompt')
|
| 43 |
run_button = gr.Button(label='Run')
|
|
|
|
| 52 |
maximum=768,
|
| 53 |
value=512,
|
| 54 |
step=256)
|
| 55 |
+
num_steps = gr.Slider(label='Steps',
|
| 56 |
+
minimum=1,
|
| 57 |
+
maximum=100,
|
| 58 |
+
value=20,
|
| 59 |
+
step=1)
|
| 60 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
| 61 |
+
minimum=0.1,
|
| 62 |
+
maximum=30.0,
|
| 63 |
+
value=9.0,
|
| 64 |
+
step=0.1)
|
| 65 |
seed = gr.Slider(label='Seed',
|
| 66 |
minimum=-1,
|
| 67 |
maximum=2147483647,
|
| 68 |
step=1,
|
| 69 |
+
randomize=True)
|
|
|
|
|
|
|
| 70 |
a_prompt = gr.Textbox(
|
| 71 |
label='Added Prompt',
|
| 72 |
value='best quality, extremely detailed')
|
|
|
|
| 76 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 77 |
)
|
| 78 |
with gr.Column():
|
| 79 |
+
result = gr.Gallery(label='Output',
|
| 80 |
+
show_label=False,
|
| 81 |
+
elem_id='gallery').style(grid=2,
|
| 82 |
+
height='auto')
|
| 83 |
+
inputs = [
|
| 84 |
+
input_image,
|
| 85 |
+
prompt,
|
| 86 |
+
a_prompt,
|
| 87 |
+
n_prompt,
|
| 88 |
+
num_samples,
|
| 89 |
+
image_resolution,
|
| 90 |
+
num_steps,
|
| 91 |
+
guidance_scale,
|
| 92 |
+
seed,
|
| 93 |
]
|
| 94 |
+
run_button.click(fn=process, inputs=inputs, outputs=result)
|
| 95 |
return demo
|
gradio_seg2image.py
CHANGED
|
@@ -29,23 +29,21 @@ def create_demo(process, max_images=12):
|
|
| 29 |
maximum=1024,
|
| 30 |
value=512,
|
| 31 |
step=1)
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
seed = gr.Slider(label='Seed',
|
| 43 |
minimum=-1,
|
| 44 |
maximum=2147483647,
|
| 45 |
step=1,
|
| 46 |
-
randomize=True
|
| 47 |
-
queue=False)
|
| 48 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
| 49 |
a_prompt = gr.Textbox(
|
| 50 |
label='Added Prompt',
|
| 51 |
value='best quality, extremely detailed')
|
|
@@ -55,16 +53,24 @@ def create_demo(process, max_images=12):
|
|
| 55 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 56 |
)
|
| 57 |
with gr.Column():
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
input_image,
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
]
|
| 66 |
run_button.click(fn=process,
|
| 67 |
-
inputs=
|
| 68 |
-
outputs=
|
| 69 |
api_name='seg')
|
| 70 |
return demo
|
|
|
|
| 29 |
maximum=1024,
|
| 30 |
value=512,
|
| 31 |
step=1)
|
| 32 |
+
num_steps = gr.Slider(label='Steps',
|
| 33 |
+
minimum=1,
|
| 34 |
+
maximum=100,
|
| 35 |
+
value=20,
|
| 36 |
+
step=1)
|
| 37 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
| 38 |
+
minimum=0.1,
|
| 39 |
+
maximum=30.0,
|
| 40 |
+
value=9.0,
|
| 41 |
+
step=0.1)
|
| 42 |
seed = gr.Slider(label='Seed',
|
| 43 |
minimum=-1,
|
| 44 |
maximum=2147483647,
|
| 45 |
step=1,
|
| 46 |
+
randomize=True)
|
|
|
|
|
|
|
| 47 |
a_prompt = gr.Textbox(
|
| 48 |
label='Added Prompt',
|
| 49 |
value='best quality, extremely detailed')
|
|
|
|
| 53 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 54 |
)
|
| 55 |
with gr.Column():
|
| 56 |
+
result = gr.Gallery(label='Output',
|
| 57 |
+
show_label=False,
|
| 58 |
+
elem_id='gallery').style(grid=2,
|
| 59 |
+
height='auto')
|
| 60 |
+
inputs = [
|
| 61 |
+
input_image,
|
| 62 |
+
prompt,
|
| 63 |
+
a_prompt,
|
| 64 |
+
n_prompt,
|
| 65 |
+
num_samples,
|
| 66 |
+
image_resolution,
|
| 67 |
+
detect_resolution,
|
| 68 |
+
num_steps,
|
| 69 |
+
guidance_scale,
|
| 70 |
+
seed,
|
| 71 |
]
|
| 72 |
run_button.click(fn=process,
|
| 73 |
+
inputs=inputs,
|
| 74 |
+
outputs=result,
|
| 75 |
api_name='seg')
|
| 76 |
return demo
|
model.py
CHANGED
|
@@ -3,20 +3,20 @@
|
|
| 3 |
from __future__ import annotations
|
| 4 |
|
| 5 |
import pathlib
|
| 6 |
-
import random
|
| 7 |
-
import shlex
|
| 8 |
-
import subprocess
|
| 9 |
import sys
|
| 10 |
|
| 11 |
import cv2
|
| 12 |
-
import einops
|
| 13 |
import numpy as np
|
|
|
|
| 14 |
import torch
|
| 15 |
-
from
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
import config
|
| 20 |
from annotator.canny import apply_canny
|
| 21 |
from annotator.hed import apply_hed, nms
|
| 22 |
from annotator.midas import apply_midas
|
|
@@ -24,743 +24,594 @@ from annotator.mlsd import apply_mlsd
|
|
| 24 |
from annotator.openpose import apply_openpose
|
| 25 |
from annotator.uniformer import apply_uniformer
|
| 26 |
from annotator.util import HWC3, resize_image
|
| 27 |
-
from cldm.model import create_model, load_state_dict
|
| 28 |
-
from ldm.models.diffusion.ddim import DDIMSampler
|
| 29 |
from share import *
|
| 30 |
|
| 31 |
-
|
| 32 |
-
'canny': '
|
| 33 |
-
'hough': '
|
| 34 |
-
'hed': '
|
| 35 |
-
'scribble': '
|
| 36 |
-
'pose': '
|
| 37 |
-
'seg': '
|
| 38 |
-
'depth': '
|
| 39 |
-
'normal': '
|
| 40 |
}
|
| 41 |
-
ORIGINAL_WEIGHT_ROOT = 'https://huggingface.co/lllyasviel/ControlNet/resolve/main/models/'
|
| 42 |
-
|
| 43 |
-
LIGHTWEIGHT_MODEL_NAMES = {
|
| 44 |
-
'canny': 'control_canny-fp16.safetensors',
|
| 45 |
-
'hough': 'control_mlsd-fp16.safetensors',
|
| 46 |
-
'hed': 'control_hed-fp16.safetensors',
|
| 47 |
-
'scribble': 'control_scribble-fp16.safetensors',
|
| 48 |
-
'pose': 'control_openpose-fp16.safetensors',
|
| 49 |
-
'seg': 'control_seg-fp16.safetensors',
|
| 50 |
-
'depth': 'control_depth-fp16.safetensors',
|
| 51 |
-
'normal': 'control_normal-fp16.safetensors',
|
| 52 |
-
}
|
| 53 |
-
LIGHTWEIGHT_WEIGHT_ROOT = 'https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/'
|
| 54 |
|
| 55 |
|
| 56 |
class Model:
|
| 57 |
-
def __init__(self
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
self.
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
self.download_models()
|
| 81 |
-
|
| 82 |
-
def download_base_model(self, model_url: str) -> pathlib.Path:
|
| 83 |
-
model_name = model_url.split('/')[-1]
|
| 84 |
-
out_path = self.model_dir / model_name
|
| 85 |
-
if not out_path.exists():
|
| 86 |
-
subprocess.run(shlex.split(f'wget {model_url} -O {out_path}'))
|
| 87 |
-
return out_path
|
| 88 |
-
|
| 89 |
-
def load_base_model(self, model_url: str) -> None:
|
| 90 |
-
model_path = self.download_base_model(model_url)
|
| 91 |
-
self.model.load_state_dict(load_state_dict(model_path,
|
| 92 |
-
location=self.device.type),
|
| 93 |
-
strict=False)
|
| 94 |
-
|
| 95 |
-
def load_weight(self, task_name: str) -> None:
|
| 96 |
if task_name == self.task_name:
|
| 97 |
return
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
load_state_dict(weight_path, location=self.device.type))
|
| 105 |
self.task_name = task_name
|
| 106 |
|
| 107 |
-
def
|
| 108 |
-
if
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
@torch.inference_mode()
|
| 122 |
-
def process_canny(
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 173 |
-
|
| 174 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 175 |
-
x_samples = (
|
| 176 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
| 177 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 178 |
-
|
| 179 |
-
results = [x_samples[i] for i in range(num_samples)]
|
| 180 |
-
return [255 - detected_map] + results
|
| 181 |
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
num_samples, image_resolution, detect_resolution,
|
| 185 |
-
ddim_steps, scale, seed, eta, value_threshold,
|
| 186 |
-
distance_threshold):
|
| 187 |
-
self.load_weight('hough')
|
| 188 |
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
value_threshold, distance_threshold)
|
| 192 |
-
detected_map = HWC3(detected_map)
|
| 193 |
-
img = resize_image(input_image, image_resolution)
|
| 194 |
-
H, W, C = img.shape
|
| 195 |
-
|
| 196 |
-
detected_map = cv2.resize(detected_map, (W, H),
|
| 197 |
-
interpolation=cv2.INTER_NEAREST)
|
| 198 |
-
|
| 199 |
-
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 200 |
-
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 201 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 202 |
-
|
| 203 |
-
if seed == -1:
|
| 204 |
-
seed = random.randint(0, 65535)
|
| 205 |
-
seed_everything(seed)
|
| 206 |
-
|
| 207 |
-
if config.save_memory:
|
| 208 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 209 |
-
|
| 210 |
-
cond = {
|
| 211 |
-
'c_concat': [control],
|
| 212 |
-
'c_crossattn': [
|
| 213 |
-
self.model.get_learned_conditioning(
|
| 214 |
-
[prompt + ', ' + a_prompt] * num_samples)
|
| 215 |
-
]
|
| 216 |
-
}
|
| 217 |
-
un_cond = {
|
| 218 |
-
'c_concat': [control],
|
| 219 |
-
'c_crossattn':
|
| 220 |
-
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
|
| 221 |
-
}
|
| 222 |
-
shape = (4, H // 8, W // 8)
|
| 223 |
-
|
| 224 |
-
if config.save_memory:
|
| 225 |
-
self.model.low_vram_shift(is_diffusing=True)
|
| 226 |
-
|
| 227 |
-
samples, intermediates = self.ddim_sampler.sample(
|
| 228 |
-
ddim_steps,
|
| 229 |
-
num_samples,
|
| 230 |
-
shape,
|
| 231 |
-
cond,
|
| 232 |
-
verbose=False,
|
| 233 |
-
eta=eta,
|
| 234 |
-
unconditional_guidance_scale=scale,
|
| 235 |
-
unconditional_conditioning=un_cond)
|
| 236 |
-
|
| 237 |
-
if config.save_memory:
|
| 238 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 239 |
-
|
| 240 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 241 |
-
x_samples = (
|
| 242 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
| 243 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 244 |
-
|
| 245 |
-
results = [x_samples[i] for i in range(num_samples)]
|
| 246 |
-
return [
|
| 247 |
-
255 - cv2.dilate(detected_map,
|
| 248 |
-
np.ones(shape=(3, 3), dtype=np.uint8),
|
| 249 |
-
iterations=1)
|
| 250 |
-
] + results
|
| 251 |
|
| 252 |
@torch.inference_mode()
|
| 253 |
-
def
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
input_image = HWC3(input_image)
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
H, W
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 268 |
-
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 269 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 270 |
-
|
| 271 |
-
if seed == -1:
|
| 272 |
-
seed = random.randint(0, 65535)
|
| 273 |
-
seed_everything(seed)
|
| 274 |
-
|
| 275 |
-
if config.save_memory:
|
| 276 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 277 |
-
|
| 278 |
-
cond = {
|
| 279 |
-
'c_concat': [control],
|
| 280 |
-
'c_crossattn': [
|
| 281 |
-
self.model.get_learned_conditioning(
|
| 282 |
-
[prompt + ', ' + a_prompt] * num_samples)
|
| 283 |
-
]
|
| 284 |
-
}
|
| 285 |
-
un_cond = {
|
| 286 |
-
'c_concat': [control],
|
| 287 |
-
'c_crossattn':
|
| 288 |
-
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
|
| 289 |
-
}
|
| 290 |
-
shape = (4, H // 8, W // 8)
|
| 291 |
-
|
| 292 |
-
if config.save_memory:
|
| 293 |
-
self.model.low_vram_shift(is_diffusing=True)
|
| 294 |
-
|
| 295 |
-
samples, intermediates = self.ddim_sampler.sample(
|
| 296 |
-
ddim_steps,
|
| 297 |
-
num_samples,
|
| 298 |
-
shape,
|
| 299 |
-
cond,
|
| 300 |
-
verbose=False,
|
| 301 |
-
eta=eta,
|
| 302 |
-
unconditional_guidance_scale=scale,
|
| 303 |
-
unconditional_conditioning=un_cond)
|
| 304 |
-
|
| 305 |
-
if config.save_memory:
|
| 306 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 307 |
-
|
| 308 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 309 |
-
x_samples = (
|
| 310 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
| 311 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 312 |
-
|
| 313 |
-
results = [x_samples[i] for i in range(num_samples)]
|
| 314 |
-
return [detected_map] + results
|
| 315 |
|
| 316 |
@torch.inference_mode()
|
| 317 |
-
def
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
shape,
|
| 360 |
-
cond,
|
| 361 |
-
verbose=False,
|
| 362 |
-
eta=eta,
|
| 363 |
-
unconditional_guidance_scale=scale,
|
| 364 |
-
unconditional_conditioning=un_cond)
|
| 365 |
-
|
| 366 |
-
if config.save_memory:
|
| 367 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 368 |
-
|
| 369 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 370 |
-
x_samples = (
|
| 371 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
| 372 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 373 |
-
|
| 374 |
-
results = [x_samples[i] for i in range(num_samples)]
|
| 375 |
-
return [255 - detected_map] + results
|
| 376 |
|
| 377 |
@torch.inference_mode()
|
| 378 |
-
def
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
ddim_steps,
|
| 420 |
-
num_samples,
|
| 421 |
-
shape,
|
| 422 |
-
cond,
|
| 423 |
-
verbose=False,
|
| 424 |
-
eta=eta,
|
| 425 |
-
unconditional_guidance_scale=scale,
|
| 426 |
-
unconditional_conditioning=un_cond)
|
| 427 |
-
|
| 428 |
-
if config.save_memory:
|
| 429 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 430 |
-
|
| 431 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 432 |
-
x_samples = (
|
| 433 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
| 434 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 435 |
-
|
| 436 |
-
results = [x_samples[i] for i in range(num_samples)]
|
| 437 |
-
return [255 - detected_map] + results
|
| 438 |
|
| 439 |
@torch.inference_mode()
|
| 440 |
-
def
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 445 |
input_image = HWC3(input_image)
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
H, W
|
| 450 |
-
|
| 451 |
-
detected_map = cv2.resize(detected_map, (W, H),
|
| 452 |
-
interpolation=cv2.INTER_LINEAR)
|
| 453 |
-
detected_map = nms(detected_map, 127, 3.0)
|
| 454 |
-
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
|
| 455 |
-
detected_map[detected_map > 4] = 255
|
| 456 |
-
detected_map[detected_map < 255] = 0
|
| 457 |
-
|
| 458 |
-
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 459 |
-
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 460 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 461 |
-
|
| 462 |
-
if seed == -1:
|
| 463 |
-
seed = random.randint(0, 65535)
|
| 464 |
-
seed_everything(seed)
|
| 465 |
-
|
| 466 |
-
if config.save_memory:
|
| 467 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 468 |
-
|
| 469 |
-
cond = {
|
| 470 |
-
'c_concat': [control],
|
| 471 |
-
'c_crossattn': [
|
| 472 |
-
self.model.get_learned_conditioning(
|
| 473 |
-
[prompt + ', ' + a_prompt] * num_samples)
|
| 474 |
-
]
|
| 475 |
-
}
|
| 476 |
-
un_cond = {
|
| 477 |
-
'c_concat': [control],
|
| 478 |
-
'c_crossattn':
|
| 479 |
-
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
|
| 480 |
-
}
|
| 481 |
-
shape = (4, H // 8, W // 8)
|
| 482 |
-
|
| 483 |
-
if config.save_memory:
|
| 484 |
-
self.model.low_vram_shift(is_diffusing=True)
|
| 485 |
-
|
| 486 |
-
samples, intermediates = self.ddim_sampler.sample(
|
| 487 |
-
ddim_steps,
|
| 488 |
-
num_samples,
|
| 489 |
-
shape,
|
| 490 |
-
cond,
|
| 491 |
-
verbose=False,
|
| 492 |
-
eta=eta,
|
| 493 |
-
unconditional_guidance_scale=scale,
|
| 494 |
-
unconditional_conditioning=un_cond)
|
| 495 |
-
|
| 496 |
-
if config.save_memory:
|
| 497 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 498 |
-
|
| 499 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 500 |
-
x_samples = (
|
| 501 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
| 502 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 503 |
-
|
| 504 |
-
results = [x_samples[i] for i in range(num_samples)]
|
| 505 |
-
return [255 - detected_map] + results
|
| 506 |
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
|
|
|
|
|
|
|
|
|
| 512 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 513 |
input_image = HWC3(input_image)
|
| 514 |
-
|
| 515 |
resize_image(input_image, detect_resolution))
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
H, W
|
| 519 |
-
|
| 520 |
-
detected_map = cv2.resize(detected_map, (W, H),
|
| 521 |
-
interpolation=cv2.INTER_NEAREST)
|
| 522 |
-
|
| 523 |
-
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 524 |
-
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 525 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 526 |
-
|
| 527 |
-
if seed == -1:
|
| 528 |
-
seed = random.randint(0, 65535)
|
| 529 |
-
seed_everything(seed)
|
| 530 |
-
|
| 531 |
-
if config.save_memory:
|
| 532 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 533 |
-
|
| 534 |
-
cond = {
|
| 535 |
-
'c_concat': [control],
|
| 536 |
-
'c_crossattn': [
|
| 537 |
-
self.model.get_learned_conditioning(
|
| 538 |
-
[prompt + ', ' + a_prompt] * num_samples)
|
| 539 |
-
]
|
| 540 |
-
}
|
| 541 |
-
un_cond = {
|
| 542 |
-
'c_concat': [control],
|
| 543 |
-
'c_crossattn':
|
| 544 |
-
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
|
| 545 |
-
}
|
| 546 |
-
shape = (4, H // 8, W // 8)
|
| 547 |
-
|
| 548 |
-
if config.save_memory:
|
| 549 |
-
self.model.low_vram_shift(is_diffusing=True)
|
| 550 |
-
|
| 551 |
-
samples, intermediates = self.ddim_sampler.sample(
|
| 552 |
-
ddim_steps,
|
| 553 |
-
num_samples,
|
| 554 |
-
shape,
|
| 555 |
-
cond,
|
| 556 |
-
verbose=False,
|
| 557 |
-
eta=eta,
|
| 558 |
-
unconditional_guidance_scale=scale,
|
| 559 |
-
unconditional_conditioning=un_cond)
|
| 560 |
-
|
| 561 |
-
if config.save_memory:
|
| 562 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 563 |
-
|
| 564 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 565 |
-
x_samples = (
|
| 566 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
| 567 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 568 |
-
|
| 569 |
-
results = [x_samples[i] for i in range(num_samples)]
|
| 570 |
-
return [detected_map] + results
|
| 571 |
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
image_resolution, detect_resolution, ddim_steps, scale,
|
| 575 |
-
seed, eta):
|
| 576 |
-
self.load_weight('seg')
|
| 577 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 578 |
input_image = HWC3(input_image)
|
| 579 |
-
|
| 580 |
resize_image(input_image, detect_resolution))
|
| 581 |
-
|
| 582 |
-
H, W
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 588 |
-
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 589 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 590 |
-
|
| 591 |
-
if seed == -1:
|
| 592 |
-
seed = random.randint(0, 65535)
|
| 593 |
-
seed_everything(seed)
|
| 594 |
-
|
| 595 |
-
if config.save_memory:
|
| 596 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 597 |
-
|
| 598 |
-
cond = {
|
| 599 |
-
'c_concat': [control],
|
| 600 |
-
'c_crossattn': [
|
| 601 |
-
self.model.get_learned_conditioning(
|
| 602 |
-
[prompt + ', ' + a_prompt] * num_samples)
|
| 603 |
-
]
|
| 604 |
-
}
|
| 605 |
-
un_cond = {
|
| 606 |
-
'c_concat': [control],
|
| 607 |
-
'c_crossattn':
|
| 608 |
-
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
|
| 609 |
-
}
|
| 610 |
-
shape = (4, H // 8, W // 8)
|
| 611 |
-
|
| 612 |
-
if config.save_memory:
|
| 613 |
-
self.model.low_vram_shift(is_diffusing=True)
|
| 614 |
-
|
| 615 |
-
samples, intermediates = self.ddim_sampler.sample(
|
| 616 |
-
ddim_steps,
|
| 617 |
-
num_samples,
|
| 618 |
-
shape,
|
| 619 |
-
cond,
|
| 620 |
-
verbose=False,
|
| 621 |
-
eta=eta,
|
| 622 |
-
unconditional_guidance_scale=scale,
|
| 623 |
-
unconditional_conditioning=un_cond)
|
| 624 |
-
|
| 625 |
-
if config.save_memory:
|
| 626 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 627 |
-
|
| 628 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 629 |
-
x_samples = (
|
| 630 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
| 631 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 632 |
-
|
| 633 |
-
results = [x_samples[i] for i in range(num_samples)]
|
| 634 |
-
return [detected_map] + results
|
| 635 |
|
| 636 |
@torch.inference_mode()
|
| 637 |
-
def
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 642 |
input_image = HWC3(input_image)
|
| 643 |
-
|
| 644 |
resize_image(input_image, detect_resolution))
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
detected_map = cv2.resize(detected_map, (W, H),
|
| 650 |
-
interpolation=cv2.INTER_LINEAR)
|
| 651 |
-
|
| 652 |
-
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 653 |
-
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 654 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 655 |
-
|
| 656 |
-
if seed == -1:
|
| 657 |
-
seed = random.randint(0, 65535)
|
| 658 |
-
seed_everything(seed)
|
| 659 |
-
|
| 660 |
-
if config.save_memory:
|
| 661 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 662 |
-
|
| 663 |
-
cond = {
|
| 664 |
-
'c_concat': [control],
|
| 665 |
-
'c_crossattn': [
|
| 666 |
-
self.model.get_learned_conditioning(
|
| 667 |
-
[prompt + ', ' + a_prompt] * num_samples)
|
| 668 |
-
]
|
| 669 |
-
}
|
| 670 |
-
un_cond = {
|
| 671 |
-
'c_concat': [control],
|
| 672 |
-
'c_crossattn':
|
| 673 |
-
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
|
| 674 |
-
}
|
| 675 |
-
shape = (4, H // 8, W // 8)
|
| 676 |
-
|
| 677 |
-
if config.save_memory:
|
| 678 |
-
self.model.low_vram_shift(is_diffusing=True)
|
| 679 |
-
|
| 680 |
-
samples, intermediates = self.ddim_sampler.sample(
|
| 681 |
-
ddim_steps,
|
| 682 |
-
num_samples,
|
| 683 |
-
shape,
|
| 684 |
-
cond,
|
| 685 |
-
verbose=False,
|
| 686 |
-
eta=eta,
|
| 687 |
-
unconditional_guidance_scale=scale,
|
| 688 |
-
unconditional_conditioning=un_cond)
|
| 689 |
-
|
| 690 |
-
if config.save_memory:
|
| 691 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 692 |
-
|
| 693 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 694 |
-
x_samples = (
|
| 695 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
| 696 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 697 |
-
|
| 698 |
-
results = [x_samples[i] for i in range(num_samples)]
|
| 699 |
-
return [detected_map] + results
|
| 700 |
|
| 701 |
@torch.inference_mode()
|
| 702 |
-
def
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 707 |
input_image = HWC3(input_image)
|
| 708 |
-
_,
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
H, W
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
|
| 735 |
-
|
| 736 |
-
|
| 737 |
-
|
| 738 |
-
|
| 739 |
-
|
| 740 |
-
|
| 741 |
-
|
| 742 |
-
|
| 743 |
-
|
| 744 |
-
|
| 745 |
-
|
| 746 |
-
|
| 747 |
-
|
| 748 |
-
|
| 749 |
-
|
| 750 |
-
|
| 751 |
-
|
| 752 |
-
verbose=False,
|
| 753 |
-
eta=eta,
|
| 754 |
-
unconditional_guidance_scale=scale,
|
| 755 |
-
unconditional_conditioning=un_cond)
|
| 756 |
-
|
| 757 |
-
if config.save_memory:
|
| 758 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 759 |
-
|
| 760 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 761 |
-
x_samples = (
|
| 762 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
| 763 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 764 |
-
|
| 765 |
-
results = [x_samples[i] for i in range(num_samples)]
|
| 766 |
-
return [detected_map] + results
|
|
|
|
| 3 |
from __future__ import annotations
|
| 4 |
|
| 5 |
import pathlib
|
|
|
|
|
|
|
|
|
|
| 6 |
import sys
|
| 7 |
|
| 8 |
import cv2
|
|
|
|
| 9 |
import numpy as np
|
| 10 |
+
import PIL.Image
|
| 11 |
import torch
|
| 12 |
+
from diffusers import (ControlNetModel, DiffusionPipeline,
|
| 13 |
+
StableDiffusionControlNetPipeline,
|
| 14 |
+
UniPCMultistepScheduler)
|
| 15 |
|
| 16 |
+
repo_dir = pathlib.Path(__file__).parent
|
| 17 |
+
submodule_dir = repo_dir / 'ControlNet'
|
| 18 |
+
sys.path.append(submodule_dir.as_posix())
|
| 19 |
|
|
|
|
| 20 |
from annotator.canny import apply_canny
|
| 21 |
from annotator.hed import apply_hed, nms
|
| 22 |
from annotator.midas import apply_midas
|
|
|
|
| 24 |
from annotator.openpose import apply_openpose
|
| 25 |
from annotator.uniformer import apply_uniformer
|
| 26 |
from annotator.util import HWC3, resize_image
|
|
|
|
|
|
|
| 27 |
from share import *
|
| 28 |
|
| 29 |
+
CONTROLNET_MODEL_IDS = {
|
| 30 |
+
'canny': 'lllyasviel/sd-controlnet-canny',
|
| 31 |
+
'hough': 'lllyasviel/sd-controlnet-mlsd',
|
| 32 |
+
'hed': 'lllyasviel/sd-controlnet-hed',
|
| 33 |
+
'scribble': 'lllyasviel/sd-controlnet-scribble',
|
| 34 |
+
'pose': 'lllyasviel/sd-controlnet-openpose',
|
| 35 |
+
'seg': 'lllyasviel/sd-controlnet-seg',
|
| 36 |
+
'depth': 'lllyasviel/sd-controlnet-depth',
|
| 37 |
+
'normal': 'lllyasviel/sd-controlnet-normal',
|
| 38 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
|
| 41 |
class Model:
|
| 42 |
+
def __init__(self):
|
| 43 |
+
# FIXME
|
| 44 |
+
self.base_model_id = 'andite/anything-v4.0'
|
| 45 |
+
self.task_name = 'pose'
|
| 46 |
+
self.pipe = self.load_pipe()
|
| 47 |
+
|
| 48 |
+
def load_pipe(self) -> DiffusionPipeline:
|
| 49 |
+
model_id = CONTROLNET_MODEL_IDS[self.task_name]
|
| 50 |
+
controlnet = ControlNetModel.from_pretrained(model_id,
|
| 51 |
+
torch_dtype=torch.float16)
|
| 52 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 53 |
+
self.base_model_id,
|
| 54 |
+
safety_checker=None,
|
| 55 |
+
controlnet=controlnet,
|
| 56 |
+
torch_dtype=torch.float16)
|
| 57 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(
|
| 58 |
+
pipe.scheduler.config)
|
| 59 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 60 |
+
pipe.enable_model_cpu_offload()
|
| 61 |
+
return pipe
|
| 62 |
+
|
| 63 |
+
def load_controlnet_weight(self, task_name: str) -> None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
if task_name == self.task_name:
|
| 65 |
return
|
| 66 |
+
model_id = CONTROLNET_MODEL_IDS[task_name]
|
| 67 |
+
controlnet = ControlNetModel.from_pretrained(model_id,
|
| 68 |
+
torch_dtype=torch.float16)
|
| 69 |
+
from accelerate import cpu_offload_with_hook
|
| 70 |
+
cpu_offload_with_hook(controlnet, torch.device('cuda:0'))
|
| 71 |
+
self.pipe.controlnet = controlnet
|
|
|
|
| 72 |
self.task_name = task_name
|
| 73 |
|
| 74 |
+
def get_prompt(self, prompt: str, additional_prompt: str) -> str:
|
| 75 |
+
if not prompt:
|
| 76 |
+
prompt = additional_prompt
|
| 77 |
+
else:
|
| 78 |
+
prompt = f'{prompt}, {additional_prompt}'
|
| 79 |
+
return prompt
|
| 80 |
+
|
| 81 |
+
def run_pipe(
|
| 82 |
+
self,
|
| 83 |
+
prompt: str,
|
| 84 |
+
negative_prompt: str,
|
| 85 |
+
control_image: PIL.Image.Image,
|
| 86 |
+
num_images: int,
|
| 87 |
+
num_steps: int,
|
| 88 |
+
guidance_scale: float,
|
| 89 |
+
seed: int,
|
| 90 |
+
):
|
| 91 |
+
generator = torch.Generator().manual_seed(seed)
|
| 92 |
+
return self.pipe(prompt=prompt,
|
| 93 |
+
negative_prompt=negative_prompt,
|
| 94 |
+
guidance_scale=guidance_scale,
|
| 95 |
+
num_images_per_prompt=num_images,
|
| 96 |
+
num_inference_steps=num_steps,
|
| 97 |
+
generator=generator,
|
| 98 |
+
image=control_image)
|
| 99 |
+
|
| 100 |
+
def process(
|
| 101 |
+
self,
|
| 102 |
+
task_name: str,
|
| 103 |
+
prompt: str,
|
| 104 |
+
additional_prompt: str,
|
| 105 |
+
negative_prompt: str,
|
| 106 |
+
control_image: PIL.Image.Image,
|
| 107 |
+
vis_control_image: PIL.Image.Image,
|
| 108 |
+
num_samples: int,
|
| 109 |
+
num_steps: int,
|
| 110 |
+
guidance_scale: float,
|
| 111 |
+
seed: int,
|
| 112 |
+
):
|
| 113 |
+
self.load_controlnet_weight(task_name)
|
| 114 |
+
results = self.run_pipe(
|
| 115 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
| 116 |
+
negative_prompt=negative_prompt,
|
| 117 |
+
control_image=control_image,
|
| 118 |
+
num_images=num_samples,
|
| 119 |
+
num_steps=num_steps,
|
| 120 |
+
guidance_scale=guidance_scale,
|
| 121 |
+
seed=seed,
|
| 122 |
+
)
|
| 123 |
+
return [vis_control_image] + results.images
|
| 124 |
+
|
| 125 |
+
def preprocess_canny(
|
| 126 |
+
self,
|
| 127 |
+
input_image: np.ndarray,
|
| 128 |
+
image_resolution: int,
|
| 129 |
+
low_threshold: int,
|
| 130 |
+
high_threshold: int,
|
| 131 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 132 |
+
image = resize_image(HWC3(input_image), image_resolution)
|
| 133 |
+
control_image = apply_canny(image, low_threshold, high_threshold)
|
| 134 |
+
control_image = HWC3(control_image)
|
| 135 |
+
vis_control_image = 255 - control_image
|
| 136 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 137 |
+
vis_control_image)
|
| 138 |
|
| 139 |
@torch.inference_mode()
|
| 140 |
+
def process_canny(
|
| 141 |
+
self,
|
| 142 |
+
input_image: np.ndarray,
|
| 143 |
+
prompt: str,
|
| 144 |
+
additional_prompt: str,
|
| 145 |
+
negative_prompt: str,
|
| 146 |
+
num_samples: int,
|
| 147 |
+
image_resolution: int,
|
| 148 |
+
num_steps: int,
|
| 149 |
+
guidance_scale: float,
|
| 150 |
+
seed: int,
|
| 151 |
+
low_threshold: int,
|
| 152 |
+
high_threshold: int,
|
| 153 |
+
) -> list[PIL.Image.Image]:
|
| 154 |
+
control_image, vis_control_image = self.preprocess_canny(
|
| 155 |
+
input_image=input_image,
|
| 156 |
+
image_resolution=image_resolution,
|
| 157 |
+
low_threshold=low_threshold,
|
| 158 |
+
high_threshold=high_threshold,
|
| 159 |
+
)
|
| 160 |
+
return self.process(
|
| 161 |
+
task_name='canny',
|
| 162 |
+
prompt=prompt,
|
| 163 |
+
additional_prompt=additional_prompt,
|
| 164 |
+
negative_prompt=negative_prompt,
|
| 165 |
+
control_image=control_image,
|
| 166 |
+
vis_control_image=vis_control_image,
|
| 167 |
+
num_samples=num_samples,
|
| 168 |
+
num_steps=num_steps,
|
| 169 |
+
guidance_scale=guidance_scale,
|
| 170 |
+
seed=seed,
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
def preprocess_hough(
|
| 174 |
+
self,
|
| 175 |
+
input_image: np.ndarray,
|
| 176 |
+
image_resolution: int,
|
| 177 |
+
detect_resolution: int,
|
| 178 |
+
value_threshold: float,
|
| 179 |
+
distance_threshold: float,
|
| 180 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 181 |
+
input_image = HWC3(input_image)
|
| 182 |
+
control_image = apply_mlsd(
|
| 183 |
+
resize_image(input_image, detect_resolution), value_threshold,
|
| 184 |
+
distance_threshold)
|
| 185 |
+
control_image = HWC3(control_image)
|
| 186 |
+
image = resize_image(input_image, image_resolution)
|
| 187 |
+
H, W = image.shape[:2]
|
| 188 |
+
control_image = cv2.resize(control_image, (W, H),
|
| 189 |
+
interpolation=cv2.INTER_NEAREST)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
+
vis_control_image = 255 - cv2.dilate(
|
| 192 |
+
control_image, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 195 |
+
vis_control_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
@torch.inference_mode()
|
| 198 |
+
def process_hough(
|
| 199 |
+
self,
|
| 200 |
+
input_image: np.ndarray,
|
| 201 |
+
prompt: str,
|
| 202 |
+
additional_prompt: str,
|
| 203 |
+
negative_prompt: str,
|
| 204 |
+
num_samples: int,
|
| 205 |
+
image_resolution: int,
|
| 206 |
+
detect_resolution: int,
|
| 207 |
+
num_steps: int,
|
| 208 |
+
guidance_scale: float,
|
| 209 |
+
seed: int,
|
| 210 |
+
value_threshold: float,
|
| 211 |
+
distance_threshold: float,
|
| 212 |
+
) -> list[PIL.Image.Image]:
|
| 213 |
+
control_image, vis_control_image = self.preprocess_hough(
|
| 214 |
+
input_image=input_image,
|
| 215 |
+
image_resolution=image_resolution,
|
| 216 |
+
detect_resolution=detect_resolution,
|
| 217 |
+
value_threshold=value_threshold,
|
| 218 |
+
distance_threshold=distance_threshold,
|
| 219 |
+
)
|
| 220 |
+
return self.process(
|
| 221 |
+
task_name='hough',
|
| 222 |
+
prompt=prompt,
|
| 223 |
+
additional_prompt=additional_prompt,
|
| 224 |
+
negative_prompt=negative_prompt,
|
| 225 |
+
control_image=control_image,
|
| 226 |
+
vis_control_image=vis_control_image,
|
| 227 |
+
num_samples=num_samples,
|
| 228 |
+
num_steps=num_steps,
|
| 229 |
+
guidance_scale=guidance_scale,
|
| 230 |
+
seed=seed,
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
def preprocess_hed(
|
| 234 |
+
self,
|
| 235 |
+
input_image: np.ndarray,
|
| 236 |
+
image_resolution: int,
|
| 237 |
+
detect_resolution: int,
|
| 238 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 239 |
input_image = HWC3(input_image)
|
| 240 |
+
control_image = apply_hed(resize_image(input_image, detect_resolution))
|
| 241 |
+
control_image = HWC3(control_image)
|
| 242 |
+
image = resize_image(input_image, image_resolution)
|
| 243 |
+
H, W = image.shape[:2]
|
| 244 |
+
control_image = cv2.resize(control_image, (W, H),
|
| 245 |
+
interpolation=cv2.INTER_LINEAR)
|
| 246 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 247 |
+
control_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
|
| 249 |
@torch.inference_mode()
|
| 250 |
+
def process_hed(
|
| 251 |
+
self,
|
| 252 |
+
input_image: np.ndarray,
|
| 253 |
+
prompt: str,
|
| 254 |
+
additional_prompt: str,
|
| 255 |
+
negative_prompt: str,
|
| 256 |
+
num_samples: int,
|
| 257 |
+
image_resolution: int,
|
| 258 |
+
detect_resolution: int,
|
| 259 |
+
num_steps: int,
|
| 260 |
+
guidance_scale: float,
|
| 261 |
+
seed: int,
|
| 262 |
+
) -> list[PIL.Image.Image]:
|
| 263 |
+
control_image, vis_control_image = self.preprocess_hed(
|
| 264 |
+
input_image=input_image,
|
| 265 |
+
image_resolution=image_resolution,
|
| 266 |
+
detect_resolution=detect_resolution,
|
| 267 |
+
)
|
| 268 |
+
return self.process(
|
| 269 |
+
task_name='hed',
|
| 270 |
+
prompt=prompt,
|
| 271 |
+
additional_prompt=additional_prompt,
|
| 272 |
+
negative_prompt=negative_prompt,
|
| 273 |
+
control_image=control_image,
|
| 274 |
+
vis_control_image=vis_control_image,
|
| 275 |
+
num_samples=num_samples,
|
| 276 |
+
num_steps=num_steps,
|
| 277 |
+
guidance_scale=guidance_scale,
|
| 278 |
+
seed=seed,
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
def preprocess_scribble(
|
| 282 |
+
self,
|
| 283 |
+
input_image: np.ndarray,
|
| 284 |
+
image_resolution: int,
|
| 285 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 286 |
+
image = resize_image(HWC3(input_image), image_resolution)
|
| 287 |
+
control_image = np.zeros_like(image, dtype=np.uint8)
|
| 288 |
+
control_image[np.min(image, axis=2) < 127] = 255
|
| 289 |
+
vis_control_image = 255 - control_image
|
| 290 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 291 |
+
vis_control_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
|
| 293 |
@torch.inference_mode()
|
| 294 |
+
def process_scribble(
|
| 295 |
+
self,
|
| 296 |
+
input_image: np.ndarray,
|
| 297 |
+
prompt: str,
|
| 298 |
+
additional_prompt: str,
|
| 299 |
+
negative_prompt: str,
|
| 300 |
+
num_samples: int,
|
| 301 |
+
image_resolution: int,
|
| 302 |
+
num_steps: int,
|
| 303 |
+
guidance_scale: float,
|
| 304 |
+
seed: int,
|
| 305 |
+
) -> list[PIL.Image.Image]:
|
| 306 |
+
control_image, vis_control_image = self.preprocess_scribble(
|
| 307 |
+
input_image=input_image,
|
| 308 |
+
image_resolution=image_resolution,
|
| 309 |
+
)
|
| 310 |
+
return self.process(
|
| 311 |
+
task_name='scribble',
|
| 312 |
+
prompt=prompt,
|
| 313 |
+
additional_prompt=additional_prompt,
|
| 314 |
+
negative_prompt=negative_prompt,
|
| 315 |
+
control_image=control_image,
|
| 316 |
+
vis_control_image=vis_control_image,
|
| 317 |
+
num_samples=num_samples,
|
| 318 |
+
num_steps=num_steps,
|
| 319 |
+
guidance_scale=guidance_scale,
|
| 320 |
+
seed=seed,
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
def preprocess_scribble_interactive(
|
| 324 |
+
self,
|
| 325 |
+
input_image: np.ndarray,
|
| 326 |
+
image_resolution: int,
|
| 327 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 328 |
+
image = resize_image(HWC3(input_image['mask'][:, :, 0]),
|
| 329 |
+
image_resolution)
|
| 330 |
+
control_image = np.zeros_like(image, dtype=np.uint8)
|
| 331 |
+
control_image[np.min(image, axis=2) > 127] = 255
|
| 332 |
+
vis_control_image = 255 - control_image
|
| 333 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 334 |
+
vis_control_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
|
| 336 |
@torch.inference_mode()
|
| 337 |
+
def process_scribble_interactive(
|
| 338 |
+
self,
|
| 339 |
+
input_image: np.ndarray,
|
| 340 |
+
prompt: str,
|
| 341 |
+
additional_prompt: str,
|
| 342 |
+
negative_prompt: str,
|
| 343 |
+
num_samples: int,
|
| 344 |
+
image_resolution: int,
|
| 345 |
+
num_steps: int,
|
| 346 |
+
guidance_scale: float,
|
| 347 |
+
seed: int,
|
| 348 |
+
) -> list[PIL.Image.Image]:
|
| 349 |
+
control_image, vis_control_image = self.preprocess_scribble_interactive(
|
| 350 |
+
input_image=input_image,
|
| 351 |
+
image_resolution=image_resolution,
|
| 352 |
+
)
|
| 353 |
+
return self.process(
|
| 354 |
+
task_name='scribble',
|
| 355 |
+
prompt=prompt,
|
| 356 |
+
additional_prompt=additional_prompt,
|
| 357 |
+
negative_prompt=negative_prompt,
|
| 358 |
+
control_image=control_image,
|
| 359 |
+
vis_control_image=vis_control_image,
|
| 360 |
+
num_samples=num_samples,
|
| 361 |
+
num_steps=num_steps,
|
| 362 |
+
guidance_scale=guidance_scale,
|
| 363 |
+
seed=seed,
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
def preprocess_fake_scribble(
|
| 367 |
+
self,
|
| 368 |
+
input_image: np.ndarray,
|
| 369 |
+
image_resolution: int,
|
| 370 |
+
detect_resolution: int,
|
| 371 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 372 |
input_image = HWC3(input_image)
|
| 373 |
+
control_image = apply_hed(resize_image(input_image, detect_resolution))
|
| 374 |
+
control_image = HWC3(control_image)
|
| 375 |
+
image = resize_image(input_image, image_resolution)
|
| 376 |
+
H, W = image.shape[:2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
|
| 378 |
+
control_image = cv2.resize(control_image, (W, H),
|
| 379 |
+
interpolation=cv2.INTER_LINEAR)
|
| 380 |
+
control_image = nms(control_image, 127, 3.0)
|
| 381 |
+
control_image = cv2.GaussianBlur(control_image, (0, 0), 3.0)
|
| 382 |
+
control_image[control_image > 4] = 255
|
| 383 |
+
control_image[control_image < 255] = 0
|
| 384 |
+
|
| 385 |
+
vis_control_image = 255 - control_image
|
| 386 |
|
| 387 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 388 |
+
vis_control_image)
|
| 389 |
+
|
| 390 |
+
@torch.inference_mode()
|
| 391 |
+
def process_fake_scribble(
|
| 392 |
+
self,
|
| 393 |
+
input_image: np.ndarray,
|
| 394 |
+
prompt: str,
|
| 395 |
+
additional_prompt: str,
|
| 396 |
+
negative_prompt: str,
|
| 397 |
+
num_samples: int,
|
| 398 |
+
image_resolution: int,
|
| 399 |
+
detect_resolution: int,
|
| 400 |
+
num_steps: int,
|
| 401 |
+
guidance_scale: float,
|
| 402 |
+
seed: int,
|
| 403 |
+
) -> list[PIL.Image.Image]:
|
| 404 |
+
control_image, vis_control_image = self.preprocess_fake_scribble(
|
| 405 |
+
input_image=input_image,
|
| 406 |
+
image_resolution=image_resolution,
|
| 407 |
+
detect_resolution=detect_resolution,
|
| 408 |
+
)
|
| 409 |
+
return self.process(
|
| 410 |
+
task_name='scribble',
|
| 411 |
+
prompt=prompt,
|
| 412 |
+
additional_prompt=additional_prompt,
|
| 413 |
+
negative_prompt=negative_prompt,
|
| 414 |
+
control_image=control_image,
|
| 415 |
+
vis_control_image=vis_control_image,
|
| 416 |
+
num_samples=num_samples,
|
| 417 |
+
num_steps=num_steps,
|
| 418 |
+
guidance_scale=guidance_scale,
|
| 419 |
+
seed=seed,
|
| 420 |
+
)
|
| 421 |
+
|
| 422 |
+
def preprocess_pose(
|
| 423 |
+
self,
|
| 424 |
+
input_image: np.ndarray,
|
| 425 |
+
image_resolution: int,
|
| 426 |
+
detect_resolution: int,
|
| 427 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 428 |
input_image = HWC3(input_image)
|
| 429 |
+
control_image, _ = apply_openpose(
|
| 430 |
resize_image(input_image, detect_resolution))
|
| 431 |
+
control_image = HWC3(control_image)
|
| 432 |
+
image = resize_image(input_image, image_resolution)
|
| 433 |
+
H, W = image.shape[:2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 434 |
|
| 435 |
+
control_image = cv2.resize(control_image, (W, H),
|
| 436 |
+
interpolation=cv2.INTER_NEAREST)
|
|
|
|
|
|
|
|
|
|
| 437 |
|
| 438 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 439 |
+
control_image)
|
| 440 |
+
|
| 441 |
+
@torch.inference_mode()
|
| 442 |
+
def process_pose(
|
| 443 |
+
self,
|
| 444 |
+
input_image: np.ndarray,
|
| 445 |
+
prompt: str,
|
| 446 |
+
additional_prompt: str,
|
| 447 |
+
negative_prompt: str,
|
| 448 |
+
num_samples: int,
|
| 449 |
+
image_resolution: int,
|
| 450 |
+
detect_resolution: int,
|
| 451 |
+
num_steps: int,
|
| 452 |
+
guidance_scale: float,
|
| 453 |
+
seed: int,
|
| 454 |
+
) -> list[PIL.Image.Image]:
|
| 455 |
+
control_image, vis_control_image = self.preprocess_pose(
|
| 456 |
+
input_image=input_image,
|
| 457 |
+
image_resolution=image_resolution,
|
| 458 |
+
detect_resolution=detect_resolution,
|
| 459 |
+
)
|
| 460 |
+
return self.process(
|
| 461 |
+
task_name='pose',
|
| 462 |
+
prompt=prompt,
|
| 463 |
+
additional_prompt=additional_prompt,
|
| 464 |
+
negative_prompt=negative_prompt,
|
| 465 |
+
control_image=control_image,
|
| 466 |
+
vis_control_image=vis_control_image,
|
| 467 |
+
num_samples=num_samples,
|
| 468 |
+
num_steps=num_steps,
|
| 469 |
+
guidance_scale=guidance_scale,
|
| 470 |
+
seed=seed,
|
| 471 |
+
)
|
| 472 |
+
|
| 473 |
+
def preprocess_seg(
|
| 474 |
+
self,
|
| 475 |
+
input_image: np.ndarray,
|
| 476 |
+
image_resolution: int,
|
| 477 |
+
detect_resolution: int,
|
| 478 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 479 |
input_image = HWC3(input_image)
|
| 480 |
+
control_image = apply_uniformer(
|
| 481 |
resize_image(input_image, detect_resolution))
|
| 482 |
+
image = resize_image(input_image, image_resolution)
|
| 483 |
+
H, W = image.shape[:2]
|
| 484 |
+
control_image = cv2.resize(control_image, (W, H),
|
| 485 |
+
interpolation=cv2.INTER_NEAREST)
|
| 486 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 487 |
+
control_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 488 |
|
| 489 |
@torch.inference_mode()
|
| 490 |
+
def process_seg(
|
| 491 |
+
self,
|
| 492 |
+
input_image: np.ndarray,
|
| 493 |
+
prompt: str,
|
| 494 |
+
additional_prompt: str,
|
| 495 |
+
negative_prompt: str,
|
| 496 |
+
num_samples: int,
|
| 497 |
+
image_resolution: int,
|
| 498 |
+
detect_resolution: int,
|
| 499 |
+
num_steps: int,
|
| 500 |
+
guidance_scale: float,
|
| 501 |
+
seed: int,
|
| 502 |
+
) -> list[PIL.Image.Image]:
|
| 503 |
+
control_image, vis_control_image = self.preprocess_seg(
|
| 504 |
+
input_image=input_image,
|
| 505 |
+
image_resolution=image_resolution,
|
| 506 |
+
detect_resolution=detect_resolution,
|
| 507 |
+
)
|
| 508 |
+
return self.process(
|
| 509 |
+
task_name='seg',
|
| 510 |
+
prompt=prompt,
|
| 511 |
+
additional_prompt=additional_prompt,
|
| 512 |
+
negative_prompt=negative_prompt,
|
| 513 |
+
control_image=control_image,
|
| 514 |
+
vis_control_image=vis_control_image,
|
| 515 |
+
num_samples=num_samples,
|
| 516 |
+
num_steps=num_steps,
|
| 517 |
+
guidance_scale=guidance_scale,
|
| 518 |
+
seed=seed,
|
| 519 |
+
)
|
| 520 |
+
|
| 521 |
+
def preprocess_depth(
|
| 522 |
+
self,
|
| 523 |
+
input_image: np.ndarray,
|
| 524 |
+
image_resolution: int,
|
| 525 |
+
detect_resolution: int,
|
| 526 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 527 |
input_image = HWC3(input_image)
|
| 528 |
+
control_image, _ = apply_midas(
|
| 529 |
resize_image(input_image, detect_resolution))
|
| 530 |
+
control_image = HWC3(control_image)
|
| 531 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 532 |
+
control_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 533 |
|
| 534 |
@torch.inference_mode()
|
| 535 |
+
def process_depth(
|
| 536 |
+
self,
|
| 537 |
+
input_image: np.ndarray,
|
| 538 |
+
prompt: str,
|
| 539 |
+
additional_prompt: str,
|
| 540 |
+
negative_prompt: str,
|
| 541 |
+
num_samples: int,
|
| 542 |
+
image_resolution: int,
|
| 543 |
+
detect_resolution: int,
|
| 544 |
+
num_steps: int,
|
| 545 |
+
guidance_scale: float,
|
| 546 |
+
seed: int,
|
| 547 |
+
) -> list[PIL.Image.Image]:
|
| 548 |
+
control_image, vis_control_image = self.preprocess_depth(
|
| 549 |
+
input_image=input_image,
|
| 550 |
+
image_resolution=image_resolution,
|
| 551 |
+
detect_resolution=detect_resolution,
|
| 552 |
+
)
|
| 553 |
+
return self.process(
|
| 554 |
+
task_name='depth',
|
| 555 |
+
prompt=prompt,
|
| 556 |
+
additional_prompt=additional_prompt,
|
| 557 |
+
negative_prompt=negative_prompt,
|
| 558 |
+
control_image=control_image,
|
| 559 |
+
vis_control_image=vis_control_image,
|
| 560 |
+
num_samples=num_samples,
|
| 561 |
+
num_steps=num_steps,
|
| 562 |
+
guidance_scale=guidance_scale,
|
| 563 |
+
seed=seed,
|
| 564 |
+
)
|
| 565 |
+
|
| 566 |
+
def preprocess_normal(
|
| 567 |
+
self,
|
| 568 |
+
input_image: np.ndarray,
|
| 569 |
+
image_resolution: int,
|
| 570 |
+
detect_resolution: int,
|
| 571 |
+
bg_threshold,
|
| 572 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 573 |
input_image = HWC3(input_image)
|
| 574 |
+
_, control_image = apply_midas(resize_image(input_image,
|
| 575 |
+
detect_resolution),
|
| 576 |
+
bg_th=bg_threshold)
|
| 577 |
+
control_image = HWC3(control_image)
|
| 578 |
+
image = resize_image(input_image, image_resolution)
|
| 579 |
+
H, W = image.shape[:2]
|
| 580 |
+
control_image = cv2.resize(control_image, (W, H),
|
| 581 |
+
interpolation=cv2.INTER_LINEAR)
|
| 582 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 583 |
+
control_image)
|
| 584 |
+
|
| 585 |
+
@torch.inference_mode()
|
| 586 |
+
def process_normal(
|
| 587 |
+
self,
|
| 588 |
+
input_image: np.ndarray,
|
| 589 |
+
prompt: str,
|
| 590 |
+
additional_prompt: str,
|
| 591 |
+
negative_prompt: str,
|
| 592 |
+
num_samples: int,
|
| 593 |
+
image_resolution: int,
|
| 594 |
+
detect_resolution: int,
|
| 595 |
+
num_steps: int,
|
| 596 |
+
guidance_scale: float,
|
| 597 |
+
seed: int,
|
| 598 |
+
bg_threshold,
|
| 599 |
+
) -> list[PIL.Image.Image]:
|
| 600 |
+
control_image, vis_control_image = self.preprocess_normal(
|
| 601 |
+
input_image=input_image,
|
| 602 |
+
image_resolution=image_resolution,
|
| 603 |
+
detect_resolution=detect_resolution,
|
| 604 |
+
bg_threshold=bg_threshold,
|
| 605 |
+
)
|
| 606 |
+
return self.process(
|
| 607 |
+
task_name='normal',
|
| 608 |
+
prompt=prompt,
|
| 609 |
+
additional_prompt=additional_prompt,
|
| 610 |
+
negative_prompt=negative_prompt,
|
| 611 |
+
control_image=control_image,
|
| 612 |
+
vis_control_image=vis_control_image,
|
| 613 |
+
num_samples=num_samples,
|
| 614 |
+
num_steps=num_steps,
|
| 615 |
+
guidance_scale=guidance_scale,
|
| 616 |
+
seed=seed,
|
| 617 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,7 +1,9 @@
|
|
| 1 |
addict==2.4.0
|
| 2 |
albumentations==1.3.0
|
| 3 |
einops==0.6.0
|
| 4 |
-
|
|
|
|
|
|
|
| 5 |
imageio==2.25.0
|
| 6 |
imageio-ffmpeg==0.4.8
|
| 7 |
kornia==0.6.9
|
|
|
|
| 1 |
addict==2.4.0
|
| 2 |
albumentations==1.3.0
|
| 3 |
einops==0.6.0
|
| 4 |
+
git+https://github.com/huggingface/accelerate@78151f8
|
| 5 |
+
git+https://github.com/huggingface/diffusers@fa6d52d
|
| 6 |
+
gradio==3.20.0
|
| 7 |
imageio==2.25.0
|
| 8 |
imageio-ffmpeg==0.4.8
|
| 9 |
kornia==0.6.9
|