Spaces:
Running
Running
Clean up
Browse files
model.py
CHANGED
|
@@ -111,31 +111,6 @@ class Model:
|
|
| 111 |
generator=generator,
|
| 112 |
image=control_image).images
|
| 113 |
|
| 114 |
-
def process(
|
| 115 |
-
self,
|
| 116 |
-
task_name: str,
|
| 117 |
-
prompt: str,
|
| 118 |
-
additional_prompt: str,
|
| 119 |
-
negative_prompt: str,
|
| 120 |
-
control_image: PIL.Image.Image,
|
| 121 |
-
vis_control_image: PIL.Image.Image,
|
| 122 |
-
num_samples: int,
|
| 123 |
-
num_steps: int,
|
| 124 |
-
guidance_scale: float,
|
| 125 |
-
seed: int,
|
| 126 |
-
) -> list[PIL.Image.Image]:
|
| 127 |
-
self.load_controlnet_weight(task_name)
|
| 128 |
-
results = self.run_pipe(
|
| 129 |
-
prompt=self.get_prompt(prompt, additional_prompt),
|
| 130 |
-
negative_prompt=negative_prompt,
|
| 131 |
-
control_image=control_image,
|
| 132 |
-
num_images=num_samples,
|
| 133 |
-
num_steps=num_steps,
|
| 134 |
-
guidance_scale=guidance_scale,
|
| 135 |
-
seed=seed,
|
| 136 |
-
)
|
| 137 |
-
return [vis_control_image] + results
|
| 138 |
-
|
| 139 |
@staticmethod
|
| 140 |
def preprocess_canny(
|
| 141 |
input_image: np.ndarray,
|
|
@@ -157,7 +132,7 @@ class Model:
|
|
| 157 |
prompt: str,
|
| 158 |
additional_prompt: str,
|
| 159 |
negative_prompt: str,
|
| 160 |
-
|
| 161 |
image_resolution: int,
|
| 162 |
num_steps: int,
|
| 163 |
guidance_scale: float,
|
|
@@ -171,18 +146,17 @@ class Model:
|
|
| 171 |
low_threshold=low_threshold,
|
| 172 |
high_threshold=high_threshold,
|
| 173 |
)
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
prompt=prompt,
|
| 177 |
-
additional_prompt=additional_prompt,
|
| 178 |
negative_prompt=negative_prompt,
|
| 179 |
control_image=control_image,
|
| 180 |
-
|
| 181 |
-
num_samples=num_samples,
|
| 182 |
num_steps=num_steps,
|
| 183 |
guidance_scale=guidance_scale,
|
| 184 |
seed=seed,
|
| 185 |
)
|
|
|
|
| 186 |
|
| 187 |
@staticmethod
|
| 188 |
def preprocess_hough(
|
|
@@ -215,7 +189,7 @@ class Model:
|
|
| 215 |
prompt: str,
|
| 216 |
additional_prompt: str,
|
| 217 |
negative_prompt: str,
|
| 218 |
-
|
| 219 |
image_resolution: int,
|
| 220 |
detect_resolution: int,
|
| 221 |
num_steps: int,
|
|
@@ -231,18 +205,17 @@ class Model:
|
|
| 231 |
value_threshold=value_threshold,
|
| 232 |
distance_threshold=distance_threshold,
|
| 233 |
)
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
prompt=prompt,
|
| 237 |
-
additional_prompt=additional_prompt,
|
| 238 |
negative_prompt=negative_prompt,
|
| 239 |
control_image=control_image,
|
| 240 |
-
|
| 241 |
-
num_samples=num_samples,
|
| 242 |
num_steps=num_steps,
|
| 243 |
guidance_scale=guidance_scale,
|
| 244 |
seed=seed,
|
| 245 |
)
|
|
|
|
| 246 |
|
| 247 |
@staticmethod
|
| 248 |
def preprocess_hed(
|
|
@@ -267,7 +240,7 @@ class Model:
|
|
| 267 |
prompt: str,
|
| 268 |
additional_prompt: str,
|
| 269 |
negative_prompt: str,
|
| 270 |
-
|
| 271 |
image_resolution: int,
|
| 272 |
detect_resolution: int,
|
| 273 |
num_steps: int,
|
|
@@ -279,18 +252,17 @@ class Model:
|
|
| 279 |
image_resolution=image_resolution,
|
| 280 |
detect_resolution=detect_resolution,
|
| 281 |
)
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
prompt=prompt,
|
| 285 |
-
additional_prompt=additional_prompt,
|
| 286 |
negative_prompt=negative_prompt,
|
| 287 |
control_image=control_image,
|
| 288 |
-
|
| 289 |
-
num_samples=num_samples,
|
| 290 |
num_steps=num_steps,
|
| 291 |
guidance_scale=guidance_scale,
|
| 292 |
seed=seed,
|
| 293 |
)
|
|
|
|
| 294 |
|
| 295 |
@staticmethod
|
| 296 |
def preprocess_scribble(
|
|
@@ -311,7 +283,7 @@ class Model:
|
|
| 311 |
prompt: str,
|
| 312 |
additional_prompt: str,
|
| 313 |
negative_prompt: str,
|
| 314 |
-
|
| 315 |
image_resolution: int,
|
| 316 |
num_steps: int,
|
| 317 |
guidance_scale: float,
|
|
@@ -321,18 +293,17 @@ class Model:
|
|
| 321 |
input_image=input_image,
|
| 322 |
image_resolution=image_resolution,
|
| 323 |
)
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
prompt=prompt,
|
| 327 |
-
additional_prompt=additional_prompt,
|
| 328 |
negative_prompt=negative_prompt,
|
| 329 |
control_image=control_image,
|
| 330 |
-
|
| 331 |
-
num_samples=num_samples,
|
| 332 |
num_steps=num_steps,
|
| 333 |
guidance_scale=guidance_scale,
|
| 334 |
seed=seed,
|
| 335 |
)
|
|
|
|
| 336 |
|
| 337 |
@staticmethod
|
| 338 |
def preprocess_scribble_interactive(
|
|
@@ -354,7 +325,7 @@ class Model:
|
|
| 354 |
prompt: str,
|
| 355 |
additional_prompt: str,
|
| 356 |
negative_prompt: str,
|
| 357 |
-
|
| 358 |
image_resolution: int,
|
| 359 |
num_steps: int,
|
| 360 |
guidance_scale: float,
|
|
@@ -364,18 +335,17 @@ class Model:
|
|
| 364 |
input_image=input_image,
|
| 365 |
image_resolution=image_resolution,
|
| 366 |
)
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
prompt=prompt,
|
| 370 |
-
additional_prompt=additional_prompt,
|
| 371 |
negative_prompt=negative_prompt,
|
| 372 |
control_image=control_image,
|
| 373 |
-
|
| 374 |
-
num_samples=num_samples,
|
| 375 |
num_steps=num_steps,
|
| 376 |
guidance_scale=guidance_scale,
|
| 377 |
seed=seed,
|
| 378 |
)
|
|
|
|
| 379 |
|
| 380 |
@staticmethod
|
| 381 |
def preprocess_fake_scribble(
|
|
@@ -408,7 +378,7 @@ class Model:
|
|
| 408 |
prompt: str,
|
| 409 |
additional_prompt: str,
|
| 410 |
negative_prompt: str,
|
| 411 |
-
|
| 412 |
image_resolution: int,
|
| 413 |
detect_resolution: int,
|
| 414 |
num_steps: int,
|
|
@@ -420,18 +390,17 @@ class Model:
|
|
| 420 |
image_resolution=image_resolution,
|
| 421 |
detect_resolution=detect_resolution,
|
| 422 |
)
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
prompt=prompt,
|
| 426 |
-
additional_prompt=additional_prompt,
|
| 427 |
negative_prompt=negative_prompt,
|
| 428 |
control_image=control_image,
|
| 429 |
-
|
| 430 |
-
num_samples=num_samples,
|
| 431 |
num_steps=num_steps,
|
| 432 |
guidance_scale=guidance_scale,
|
| 433 |
seed=seed,
|
| 434 |
)
|
|
|
|
| 435 |
|
| 436 |
@staticmethod
|
| 437 |
def preprocess_pose(
|
|
@@ -462,7 +431,7 @@ class Model:
|
|
| 462 |
prompt: str,
|
| 463 |
additional_prompt: str,
|
| 464 |
negative_prompt: str,
|
| 465 |
-
|
| 466 |
image_resolution: int,
|
| 467 |
detect_resolution: int,
|
| 468 |
num_steps: int,
|
|
@@ -476,18 +445,17 @@ class Model:
|
|
| 476 |
detect_resolution=detect_resolution,
|
| 477 |
is_pose_image=is_pose_image,
|
| 478 |
)
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
prompt=prompt,
|
| 482 |
-
additional_prompt=additional_prompt,
|
| 483 |
negative_prompt=negative_prompt,
|
| 484 |
control_image=control_image,
|
| 485 |
-
|
| 486 |
-
num_samples=num_samples,
|
| 487 |
num_steps=num_steps,
|
| 488 |
guidance_scale=guidance_scale,
|
| 489 |
seed=seed,
|
| 490 |
)
|
|
|
|
| 491 |
|
| 492 |
@staticmethod
|
| 493 |
def preprocess_seg(
|
|
@@ -516,7 +484,7 @@ class Model:
|
|
| 516 |
prompt: str,
|
| 517 |
additional_prompt: str,
|
| 518 |
negative_prompt: str,
|
| 519 |
-
|
| 520 |
image_resolution: int,
|
| 521 |
detect_resolution: int,
|
| 522 |
num_steps: int,
|
|
@@ -530,18 +498,17 @@ class Model:
|
|
| 530 |
detect_resolution=detect_resolution,
|
| 531 |
is_segmentation_map=is_segmentation_map,
|
| 532 |
)
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
prompt=prompt,
|
| 536 |
-
additional_prompt=additional_prompt,
|
| 537 |
negative_prompt=negative_prompt,
|
| 538 |
control_image=control_image,
|
| 539 |
-
|
| 540 |
-
num_samples=num_samples,
|
| 541 |
num_steps=num_steps,
|
| 542 |
guidance_scale=guidance_scale,
|
| 543 |
seed=seed,
|
| 544 |
)
|
|
|
|
| 545 |
|
| 546 |
@staticmethod
|
| 547 |
def preprocess_depth(
|
|
@@ -571,7 +538,7 @@ class Model:
|
|
| 571 |
prompt: str,
|
| 572 |
additional_prompt: str,
|
| 573 |
negative_prompt: str,
|
| 574 |
-
|
| 575 |
image_resolution: int,
|
| 576 |
detect_resolution: int,
|
| 577 |
num_steps: int,
|
|
@@ -585,18 +552,17 @@ class Model:
|
|
| 585 |
detect_resolution=detect_resolution,
|
| 586 |
is_depth_image=is_depth_image,
|
| 587 |
)
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
prompt=prompt,
|
| 591 |
-
additional_prompt=additional_prompt,
|
| 592 |
negative_prompt=negative_prompt,
|
| 593 |
control_image=control_image,
|
| 594 |
-
|
| 595 |
-
num_samples=num_samples,
|
| 596 |
num_steps=num_steps,
|
| 597 |
guidance_scale=guidance_scale,
|
| 598 |
seed=seed,
|
| 599 |
)
|
|
|
|
| 600 |
|
| 601 |
@staticmethod
|
| 602 |
def preprocess_normal(
|
|
@@ -628,7 +594,7 @@ class Model:
|
|
| 628 |
prompt: str,
|
| 629 |
additional_prompt: str,
|
| 630 |
negative_prompt: str,
|
| 631 |
-
|
| 632 |
image_resolution: int,
|
| 633 |
detect_resolution: int,
|
| 634 |
num_steps: int,
|
|
@@ -644,15 +610,14 @@ class Model:
|
|
| 644 |
bg_threshold=bg_threshold,
|
| 645 |
is_normal_image=is_normal_image,
|
| 646 |
)
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
prompt=prompt,
|
| 650 |
-
additional_prompt=additional_prompt,
|
| 651 |
negative_prompt=negative_prompt,
|
| 652 |
control_image=control_image,
|
| 653 |
-
|
| 654 |
-
num_samples=num_samples,
|
| 655 |
num_steps=num_steps,
|
| 656 |
guidance_scale=guidance_scale,
|
| 657 |
seed=seed,
|
| 658 |
)
|
|
|
|
|
|
| 111 |
generator=generator,
|
| 112 |
image=control_image).images
|
| 113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
@staticmethod
|
| 115 |
def preprocess_canny(
|
| 116 |
input_image: np.ndarray,
|
|
|
|
| 132 |
prompt: str,
|
| 133 |
additional_prompt: str,
|
| 134 |
negative_prompt: str,
|
| 135 |
+
num_images: int,
|
| 136 |
image_resolution: int,
|
| 137 |
num_steps: int,
|
| 138 |
guidance_scale: float,
|
|
|
|
| 146 |
low_threshold=low_threshold,
|
| 147 |
high_threshold=high_threshold,
|
| 148 |
)
|
| 149 |
+
self.load_controlnet_weight('canny')
|
| 150 |
+
results = self.run_pipe(
|
| 151 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
|
|
|
| 152 |
negative_prompt=negative_prompt,
|
| 153 |
control_image=control_image,
|
| 154 |
+
num_images=num_images,
|
|
|
|
| 155 |
num_steps=num_steps,
|
| 156 |
guidance_scale=guidance_scale,
|
| 157 |
seed=seed,
|
| 158 |
)
|
| 159 |
+
return [vis_control_image] + results
|
| 160 |
|
| 161 |
@staticmethod
|
| 162 |
def preprocess_hough(
|
|
|
|
| 189 |
prompt: str,
|
| 190 |
additional_prompt: str,
|
| 191 |
negative_prompt: str,
|
| 192 |
+
num_images: int,
|
| 193 |
image_resolution: int,
|
| 194 |
detect_resolution: int,
|
| 195 |
num_steps: int,
|
|
|
|
| 205 |
value_threshold=value_threshold,
|
| 206 |
distance_threshold=distance_threshold,
|
| 207 |
)
|
| 208 |
+
self.load_controlnet_weight('hough')
|
| 209 |
+
results = self.run_pipe(
|
| 210 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
|
|
|
| 211 |
negative_prompt=negative_prompt,
|
| 212 |
control_image=control_image,
|
| 213 |
+
num_images=num_images,
|
|
|
|
| 214 |
num_steps=num_steps,
|
| 215 |
guidance_scale=guidance_scale,
|
| 216 |
seed=seed,
|
| 217 |
)
|
| 218 |
+
return [vis_control_image] + results
|
| 219 |
|
| 220 |
@staticmethod
|
| 221 |
def preprocess_hed(
|
|
|
|
| 240 |
prompt: str,
|
| 241 |
additional_prompt: str,
|
| 242 |
negative_prompt: str,
|
| 243 |
+
num_images: int,
|
| 244 |
image_resolution: int,
|
| 245 |
detect_resolution: int,
|
| 246 |
num_steps: int,
|
|
|
|
| 252 |
image_resolution=image_resolution,
|
| 253 |
detect_resolution=detect_resolution,
|
| 254 |
)
|
| 255 |
+
self.load_controlnet_weight('hed')
|
| 256 |
+
results = self.run_pipe(
|
| 257 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
|
|
|
| 258 |
negative_prompt=negative_prompt,
|
| 259 |
control_image=control_image,
|
| 260 |
+
num_images=num_images,
|
|
|
|
| 261 |
num_steps=num_steps,
|
| 262 |
guidance_scale=guidance_scale,
|
| 263 |
seed=seed,
|
| 264 |
)
|
| 265 |
+
return [vis_control_image] + results
|
| 266 |
|
| 267 |
@staticmethod
|
| 268 |
def preprocess_scribble(
|
|
|
|
| 283 |
prompt: str,
|
| 284 |
additional_prompt: str,
|
| 285 |
negative_prompt: str,
|
| 286 |
+
num_images: int,
|
| 287 |
image_resolution: int,
|
| 288 |
num_steps: int,
|
| 289 |
guidance_scale: float,
|
|
|
|
| 293 |
input_image=input_image,
|
| 294 |
image_resolution=image_resolution,
|
| 295 |
)
|
| 296 |
+
self.load_controlnet_weight('scribble')
|
| 297 |
+
results = self.run_pipe(
|
| 298 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
|
|
|
| 299 |
negative_prompt=negative_prompt,
|
| 300 |
control_image=control_image,
|
| 301 |
+
num_images=num_images,
|
|
|
|
| 302 |
num_steps=num_steps,
|
| 303 |
guidance_scale=guidance_scale,
|
| 304 |
seed=seed,
|
| 305 |
)
|
| 306 |
+
return [vis_control_image] + results
|
| 307 |
|
| 308 |
@staticmethod
|
| 309 |
def preprocess_scribble_interactive(
|
|
|
|
| 325 |
prompt: str,
|
| 326 |
additional_prompt: str,
|
| 327 |
negative_prompt: str,
|
| 328 |
+
num_images: int,
|
| 329 |
image_resolution: int,
|
| 330 |
num_steps: int,
|
| 331 |
guidance_scale: float,
|
|
|
|
| 335 |
input_image=input_image,
|
| 336 |
image_resolution=image_resolution,
|
| 337 |
)
|
| 338 |
+
self.load_controlnet_weight('scribble')
|
| 339 |
+
results = self.run_pipe(
|
| 340 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
|
|
|
| 341 |
negative_prompt=negative_prompt,
|
| 342 |
control_image=control_image,
|
| 343 |
+
num_images=num_images,
|
|
|
|
| 344 |
num_steps=num_steps,
|
| 345 |
guidance_scale=guidance_scale,
|
| 346 |
seed=seed,
|
| 347 |
)
|
| 348 |
+
return [vis_control_image] + results
|
| 349 |
|
| 350 |
@staticmethod
|
| 351 |
def preprocess_fake_scribble(
|
|
|
|
| 378 |
prompt: str,
|
| 379 |
additional_prompt: str,
|
| 380 |
negative_prompt: str,
|
| 381 |
+
num_images: int,
|
| 382 |
image_resolution: int,
|
| 383 |
detect_resolution: int,
|
| 384 |
num_steps: int,
|
|
|
|
| 390 |
image_resolution=image_resolution,
|
| 391 |
detect_resolution=detect_resolution,
|
| 392 |
)
|
| 393 |
+
self.load_controlnet_weight('scribble')
|
| 394 |
+
results = self.run_pipe(
|
| 395 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
|
|
|
| 396 |
negative_prompt=negative_prompt,
|
| 397 |
control_image=control_image,
|
| 398 |
+
num_images=num_images,
|
|
|
|
| 399 |
num_steps=num_steps,
|
| 400 |
guidance_scale=guidance_scale,
|
| 401 |
seed=seed,
|
| 402 |
)
|
| 403 |
+
return [vis_control_image] + results
|
| 404 |
|
| 405 |
@staticmethod
|
| 406 |
def preprocess_pose(
|
|
|
|
| 431 |
prompt: str,
|
| 432 |
additional_prompt: str,
|
| 433 |
negative_prompt: str,
|
| 434 |
+
num_images: int,
|
| 435 |
image_resolution: int,
|
| 436 |
detect_resolution: int,
|
| 437 |
num_steps: int,
|
|
|
|
| 445 |
detect_resolution=detect_resolution,
|
| 446 |
is_pose_image=is_pose_image,
|
| 447 |
)
|
| 448 |
+
self.load_controlnet_weight('pose')
|
| 449 |
+
results = self.run_pipe(
|
| 450 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
|
|
|
| 451 |
negative_prompt=negative_prompt,
|
| 452 |
control_image=control_image,
|
| 453 |
+
num_images=num_images,
|
|
|
|
| 454 |
num_steps=num_steps,
|
| 455 |
guidance_scale=guidance_scale,
|
| 456 |
seed=seed,
|
| 457 |
)
|
| 458 |
+
return [vis_control_image] + results
|
| 459 |
|
| 460 |
@staticmethod
|
| 461 |
def preprocess_seg(
|
|
|
|
| 484 |
prompt: str,
|
| 485 |
additional_prompt: str,
|
| 486 |
negative_prompt: str,
|
| 487 |
+
num_images: int,
|
| 488 |
image_resolution: int,
|
| 489 |
detect_resolution: int,
|
| 490 |
num_steps: int,
|
|
|
|
| 498 |
detect_resolution=detect_resolution,
|
| 499 |
is_segmentation_map=is_segmentation_map,
|
| 500 |
)
|
| 501 |
+
self.load_controlnet_weight('seg')
|
| 502 |
+
results = self.run_pipe(
|
| 503 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
|
|
|
| 504 |
negative_prompt=negative_prompt,
|
| 505 |
control_image=control_image,
|
| 506 |
+
num_images=num_images,
|
|
|
|
| 507 |
num_steps=num_steps,
|
| 508 |
guidance_scale=guidance_scale,
|
| 509 |
seed=seed,
|
| 510 |
)
|
| 511 |
+
return [vis_control_image] + results
|
| 512 |
|
| 513 |
@staticmethod
|
| 514 |
def preprocess_depth(
|
|
|
|
| 538 |
prompt: str,
|
| 539 |
additional_prompt: str,
|
| 540 |
negative_prompt: str,
|
| 541 |
+
num_images: int,
|
| 542 |
image_resolution: int,
|
| 543 |
detect_resolution: int,
|
| 544 |
num_steps: int,
|
|
|
|
| 552 |
detect_resolution=detect_resolution,
|
| 553 |
is_depth_image=is_depth_image,
|
| 554 |
)
|
| 555 |
+
self.load_controlnet_weight('depth')
|
| 556 |
+
results = self.run_pipe(
|
| 557 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
|
|
|
| 558 |
negative_prompt=negative_prompt,
|
| 559 |
control_image=control_image,
|
| 560 |
+
num_images=num_images,
|
|
|
|
| 561 |
num_steps=num_steps,
|
| 562 |
guidance_scale=guidance_scale,
|
| 563 |
seed=seed,
|
| 564 |
)
|
| 565 |
+
return [vis_control_image] + results
|
| 566 |
|
| 567 |
@staticmethod
|
| 568 |
def preprocess_normal(
|
|
|
|
| 594 |
prompt: str,
|
| 595 |
additional_prompt: str,
|
| 596 |
negative_prompt: str,
|
| 597 |
+
num_images: int,
|
| 598 |
image_resolution: int,
|
| 599 |
detect_resolution: int,
|
| 600 |
num_steps: int,
|
|
|
|
| 610 |
bg_threshold=bg_threshold,
|
| 611 |
is_normal_image=is_normal_image,
|
| 612 |
)
|
| 613 |
+
self.load_controlnet_weight('normal')
|
| 614 |
+
results = self.run_pipe(
|
| 615 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
|
|
|
| 616 |
negative_prompt=negative_prompt,
|
| 617 |
control_image=control_image,
|
| 618 |
+
num_images=num_images,
|
|
|
|
| 619 |
num_steps=num_steps,
|
| 620 |
guidance_scale=guidance_scale,
|
| 621 |
seed=seed,
|
| 622 |
)
|
| 623 |
+
return [vis_control_image] + results
|