Spaces:
Runtime error
Runtime error
Upload app.py
Browse filesAdded app.py file
app.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""Gradio with DocFormer
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colaboratory.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1_XBurG-8jYF4eJJK5VoCJ2Y1v6RV9iAW
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
## Requirements.txt
|
| 11 |
+
import os
|
| 12 |
+
os.system('pip install pyyaml==5.1')
|
| 13 |
+
## install PyTesseract
|
| 14 |
+
os.system('pip install -q pytesseract')
|
| 15 |
+
|
| 16 |
+
## Importing the functions from the DocFormer Repo
|
| 17 |
+
from dataset import create_features
|
| 18 |
+
from modeling import DocFormerEncoder,ResNetFeatureExtractor,DocFormerEmbeddings,LanguageFeatureExtractor
|
| 19 |
+
from transformers import BertTokenizerFast
|
| 20 |
+
from utils import DocFormer
|
| 21 |
+
|
| 22 |
+
## Hyperparameters
|
| 23 |
+
import torch
|
| 24 |
+
|
| 25 |
+
seed = 42
|
| 26 |
+
target_size = (500, 384)
|
| 27 |
+
max_len = 128
|
| 28 |
+
|
| 29 |
+
## Setting some hyperparameters
|
| 30 |
+
|
| 31 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 32 |
+
|
| 33 |
+
config = {
|
| 34 |
+
"coordinate_size": 96, ## (768/8), 8 for each of the 8 coordinates of x, y
|
| 35 |
+
"hidden_dropout_prob": 0.1,
|
| 36 |
+
"hidden_size": 768,
|
| 37 |
+
"image_feature_pool_shape": [7, 7, 256],
|
| 38 |
+
"intermediate_ff_size_factor": 4,
|
| 39 |
+
"max_2d_position_embeddings": 1024,
|
| 40 |
+
"max_position_embeddings": 128,
|
| 41 |
+
"max_relative_positions": 8,
|
| 42 |
+
"num_attention_heads": 12,
|
| 43 |
+
"num_hidden_layers": 12,
|
| 44 |
+
"pad_token_id": 0,
|
| 45 |
+
"shape_size": 96,
|
| 46 |
+
"vocab_size": 30522,
|
| 47 |
+
"layer_norm_eps": 1e-12,
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
## Defining the tokenizer
|
| 51 |
+
tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
docformer = DocFormer(config)
|
| 56 |
+
|
| 57 |
+
# path_to_weights = 'drive/MyDrive/docformer_rvl_checkpoint/docformer_v1.ckpt'
|
| 58 |
+
|
| 59 |
+
url = 'https://www.kaggleusercontent.com/kf/97691030/eyJhbGciOiJkaXIiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0..64MVC5RwlflRqMaApK2jLw.rDiswzBHQcP_1_7vsHlJgSGKLdOqVB-d4hcGP6kQs5vEAdBmOzXL6XY9MleO3A4Sk0D5RB9QGeOyp7MuBZoHJbZ0gOVz6iRsats32fz2OU1yqQt22HIigL2mD_7mrTMn5IkP7KwsxtMMEuaOPEzFh1z8JQ9eE_NFBxIkOFF_Bp62a7agvDPL3HxzmxFQ7pwrYv9ZjYNfbDeeBuHu5J_MT_wHE5hOT1FENIMhebg3Q9l7eegUZD3eCMV4QoI_HsU6NZjyZOQcpVFmU6exYz8hGnFUa_V03870N6VnTkox78td0OXH29o3bYGSWneuCc86qSHKj5I1m8KbmCenPT6zU6IQINXp8BGLVlLOHdwVAPapR4X4CqSiK3Wgt5JINfpfVjQYWo2gDkAwJI026-fdLAfJQUI6mYGd-ERpyL5ZIbdkpesTslstOtlzoNT9gp_USW6aINxO8DranfK3-PiMZ_X1zHsK1vscRpO9gohNhuOg362ijjl3FQrw48-YbYfykQFfVwQpnhYQ9Q6d5gNANfJMrzH92DlpQFBaPOLcze1BAVdM4zmVGdt8Jo-Knk1JADpNizHWmF19eDxudQO_ZCxvXWpc8v3LOh-HpA2mBB0HI1DZ4cqcMETtOwas5wzHrLqDLRJpso6BKOgz78kIZJDdj6rr7yY4QVWpVOOdNZ8.VZzPPNhnz_MUdNnc5DaZOw/models/epoch=0-step=753.ckpt'
|
| 60 |
+
|
| 61 |
+
docformer.load_from_checkpoint(url)
|
| 62 |
+
|
| 63 |
+
id2label = ['scientific_report',
|
| 64 |
+
'resume',
|
| 65 |
+
'memo',
|
| 66 |
+
'file_folder',
|
| 67 |
+
'specification',
|
| 68 |
+
'news_article',
|
| 69 |
+
'letter',
|
| 70 |
+
'form',
|
| 71 |
+
'budget',
|
| 72 |
+
'handwritten',
|
| 73 |
+
'email',
|
| 74 |
+
'invoice',
|
| 75 |
+
'presentation',
|
| 76 |
+
'scientific_publication',
|
| 77 |
+
'questionnaire',
|
| 78 |
+
'advertisement']
|
| 79 |
+
|
| 80 |
+
import gradio as gr
|
| 81 |
+
|
| 82 |
+
## Taken from LayoutLMV2 space
|
| 83 |
+
|
| 84 |
+
image = gr.inputs.Image(type="pil")
|
| 85 |
+
label = gr.outputs.Label(num_top_classes=5)
|
| 86 |
+
examples = [['00093726.png'], ['00866042.png']]
|
| 87 |
+
title = "Interactive demo: DocFormer for Image Classification"
|
| 88 |
+
description = "Demo for classifying document images with DocFormer model. To use it, \
|
| 89 |
+
simply upload an image or use the example images below and click 'submit' to let the model predict the 5 most probable Document classes. \
|
| 90 |
+
Results will show up in a few seconds."
|
| 91 |
+
|
| 92 |
+
def classify_image(image):
|
| 93 |
+
|
| 94 |
+
image.save('sample_img.png')
|
| 95 |
+
final_encoding = create_features(
|
| 96 |
+
'./sample_img.png',
|
| 97 |
+
tokenizer,
|
| 98 |
+
add_batch_dim=True,
|
| 99 |
+
target_size=target_size,
|
| 100 |
+
max_seq_length=max_len,
|
| 101 |
+
path_to_save=None,
|
| 102 |
+
save_to_disk=False,
|
| 103 |
+
apply_mask_for_mlm=False,
|
| 104 |
+
extras_for_debugging=False,
|
| 105 |
+
use_ocr = True
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
keys_to_reshape = ['x_features', 'y_features', 'resized_and_aligned_bounding_boxes']
|
| 109 |
+
for key in keys_to_reshape:
|
| 110 |
+
final_encoding[key] = final_encoding[key][:, :max_len]
|
| 111 |
+
|
| 112 |
+
from torchvision import transforms
|
| 113 |
+
# ## Normalization to these mean and std (I have seen some tutorials used this, and also in image reconstruction, so used it)
|
| 114 |
+
transform = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
| 115 |
+
|
| 116 |
+
final_encoding['resized_scaled_img'] = transform(final_encoding['resized_scaled_img'])
|
| 117 |
+
output = docformer.forward(final_encoding)
|
| 118 |
+
output = output[0].softmax(axis = -1)
|
| 119 |
+
|
| 120 |
+
final_pred = {}
|
| 121 |
+
for i, score in enumerate(output):
|
| 122 |
+
score = output[i]
|
| 123 |
+
final_pred[id2label[i]] = score.detach().cpu().tolist()
|
| 124 |
+
|
| 125 |
+
return final_pred
|
| 126 |
+
|
| 127 |
+
gr.Interface(fn=classify_image, inputs=image, outputs=label, title=title, description=description, examples=examples, enable_queue=True).launch(debug=True)
|
| 128 |
+
|