Commit
·
f877487
1
Parent(s):
f96021c
add files
Browse files- Dockerfile +38 -0
- app.py +426 -0
- requirements.txt +6 -0
Dockerfile
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python 3.9
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
RUN apt-get update && apt-get install --no-install-recommends -y \
|
| 5 |
+
build-essential \
|
| 6 |
+
python3.9 \
|
| 7 |
+
python3-pip \
|
| 8 |
+
git \
|
| 9 |
+
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
| 10 |
+
|
| 11 |
+
WORKDIR /code
|
| 12 |
+
|
| 13 |
+
COPY ./requirements.txt /code/requirements.txt
|
| 14 |
+
|
| 15 |
+
# Set up a new user named "user" with user ID 1000
|
| 16 |
+
RUN useradd -m -u 1000 user
|
| 17 |
+
# Switch to the "user" user
|
| 18 |
+
USER user
|
| 19 |
+
# Set home to the user's home directory
|
| 20 |
+
ENV HOME=/home/user \
|
| 21 |
+
PATH=/home/user/.local/bin:$PATH \
|
| 22 |
+
PYTHONPATH=$HOME/app \
|
| 23 |
+
PYTHONUNBUFFERED=1 \
|
| 24 |
+
GRADIO_ALLOW_FLAGGING=never \
|
| 25 |
+
GRADIO_NUM_PORTS=1 \
|
| 26 |
+
GRADIO_SERVER_NAME=0.0.0.0 \
|
| 27 |
+
GRADIO_THEME=huggingface \
|
| 28 |
+
SYSTEM=spaces
|
| 29 |
+
|
| 30 |
+
RUN pip3 install --no-cache-dir --upgrade -r /code/requirements.txt
|
| 31 |
+
|
| 32 |
+
# Set the working directory to the user's home directory
|
| 33 |
+
WORKDIR $HOME/app
|
| 34 |
+
|
| 35 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
| 36 |
+
COPY --chown=user . $HOME/app
|
| 37 |
+
|
| 38 |
+
CMD ["python3", "app.py"]
|
app.py
ADDED
|
@@ -0,0 +1,426 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import functools
|
| 3 |
+
import os
|
| 4 |
+
from typing import List
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import rasterio
|
| 8 |
+
import torch
|
| 9 |
+
import yaml
|
| 10 |
+
from einops import rearrange
|
| 11 |
+
|
| 12 |
+
from models_mae import MaskedAutoencoderViT
|
| 13 |
+
import gradio as gr
|
| 14 |
+
from functools import partial
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
NO_DATA = -9999
|
| 18 |
+
NO_DATA_FLOAT = 0.0001
|
| 19 |
+
PERCENTILES = (0.1, 99.9)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def process_channel_group(orig_img, new_img, channels, data_mean, data_std):
|
| 23 |
+
""" Process *orig_img* and *new_img* for RGB visualization. Each band is rescaled back to the
|
| 24 |
+
original range using *data_mean* and *data_std* and then lowest and highest percentiles are
|
| 25 |
+
removed to enhance contrast. Data is rescaled to (0, 1) range and stacked channels_first.
|
| 26 |
+
Args:
|
| 27 |
+
orig_img: torch.Tensor representing original image (reference) with shape = (bands, H, W).
|
| 28 |
+
new_img: torch.Tensor representing image with shape = (bands, H, W).
|
| 29 |
+
channels: list of indices representing RGB channels.
|
| 30 |
+
data_mean: list of mean values for each band.
|
| 31 |
+
data_std: list of std values for each band.
|
| 32 |
+
Returns:
|
| 33 |
+
torch.Tensor with shape (num_channels, height, width) for original image
|
| 34 |
+
torch.Tensor with shape (num_channels, height, width) for the other image
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
stack_c = [], []
|
| 38 |
+
|
| 39 |
+
for c in channels:
|
| 40 |
+
orig_ch = orig_img[c, ...]
|
| 41 |
+
valid_mask = torch.ones_like(orig_ch, dtype=torch.bool)
|
| 42 |
+
valid_mask[orig_ch == 0.0001] = False
|
| 43 |
+
|
| 44 |
+
# Back to original data range
|
| 45 |
+
orig_ch = (orig_ch * data_std[c]) + data_mean[c]
|
| 46 |
+
new_ch = (new_img[c, ...] * data_std[c]) + data_mean[c]
|
| 47 |
+
|
| 48 |
+
# Rescale (enhancing contrast)
|
| 49 |
+
min_value, max_value = np.percentile(orig_ch[valid_mask], PERCENTILES)
|
| 50 |
+
|
| 51 |
+
orig_ch = torch.clamp((orig_ch - min_value) / (max_value - min_value), 0, 1)
|
| 52 |
+
new_ch = torch.clamp((new_ch - min_value) / (max_value - min_value), 0, 1)
|
| 53 |
+
|
| 54 |
+
# No data as zeros
|
| 55 |
+
orig_ch[~valid_mask] = 0
|
| 56 |
+
new_ch[~valid_mask] = 0
|
| 57 |
+
|
| 58 |
+
stack_c[0].append(orig_ch)
|
| 59 |
+
stack_c[1].append(new_ch)
|
| 60 |
+
|
| 61 |
+
# Channels first
|
| 62 |
+
stack_orig = torch.stack(stack_c[0], dim=0)
|
| 63 |
+
stack_rec = torch.stack(stack_c[1], dim=0)
|
| 64 |
+
|
| 65 |
+
return stack_orig, stack_rec
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def read_geotiff(file_path: str):
|
| 69 |
+
""" Read all bands from *file_path* and returns image + meta info.
|
| 70 |
+
Args:
|
| 71 |
+
file_path: path to image file.
|
| 72 |
+
Returns:
|
| 73 |
+
np.ndarray with shape (bands, height, width)
|
| 74 |
+
meta info dict
|
| 75 |
+
"""
|
| 76 |
+
|
| 77 |
+
with rasterio.open(file_path) as src:
|
| 78 |
+
img = src.read()
|
| 79 |
+
meta = src.meta
|
| 80 |
+
|
| 81 |
+
return img, meta
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def save_geotiff(image, output_path: str, meta: dict):
|
| 85 |
+
""" Save multi-band image in Geotiff file.
|
| 86 |
+
Args:
|
| 87 |
+
image: np.ndarray with shape (bands, height, width)
|
| 88 |
+
output_path: path where to save the image
|
| 89 |
+
meta: dict with meta info.
|
| 90 |
+
"""
|
| 91 |
+
|
| 92 |
+
with rasterio.open(output_path, "w", **meta) as dest:
|
| 93 |
+
for i in range(image.shape[0]):
|
| 94 |
+
dest.write(image[i, :, :], i + 1)
|
| 95 |
+
|
| 96 |
+
return
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def _convert_np_uint8(float_image: torch.Tensor):
|
| 100 |
+
|
| 101 |
+
image = float_image.numpy() * 255.0
|
| 102 |
+
image = image.astype(dtype=np.uint8)
|
| 103 |
+
image = image.transpose((1, 2, 0))
|
| 104 |
+
|
| 105 |
+
return image
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def load_example(file_paths: List[str], mean: List[float], std: List[float]):
|
| 109 |
+
""" Build an input example by loading images in *file_paths*.
|
| 110 |
+
Args:
|
| 111 |
+
file_paths: list of file paths .
|
| 112 |
+
mean: list containing mean values for each band in the images in *file_paths*.
|
| 113 |
+
std: list containing std values for each band in the images in *file_paths*.
|
| 114 |
+
Returns:
|
| 115 |
+
np.array containing created example
|
| 116 |
+
list of meta info for each image in *file_paths*
|
| 117 |
+
"""
|
| 118 |
+
|
| 119 |
+
imgs = []
|
| 120 |
+
metas = []
|
| 121 |
+
|
| 122 |
+
for file in file_paths:
|
| 123 |
+
img, meta = read_geotiff(file)
|
| 124 |
+
img = img[:6]*10000
|
| 125 |
+
|
| 126 |
+
# Rescaling (don't normalize on nodata)
|
| 127 |
+
img = np.moveaxis(img, 0, -1) # channels last for rescaling
|
| 128 |
+
img = np.where(img == NO_DATA, NO_DATA_FLOAT, (img - mean) / std)
|
| 129 |
+
|
| 130 |
+
imgs.append(img)
|
| 131 |
+
metas.append(meta)
|
| 132 |
+
|
| 133 |
+
imgs = np.stack(imgs, axis=0) # num_frames, img_size, img_size, C
|
| 134 |
+
imgs = np.moveaxis(imgs, -1, 0).astype('float32') # C, num_frames, img_size, img_size
|
| 135 |
+
imgs = np.expand_dims(imgs, axis=0) # add batch dim
|
| 136 |
+
|
| 137 |
+
return imgs, metas
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def run_model(model: torch.nn.Module, input_data: torch.Tensor, mask_ratio: float, device: torch.device):
|
| 141 |
+
""" Run *model* with *input_data* and create images from output tokens (mask, reconstructed + visible).
|
| 142 |
+
Args:
|
| 143 |
+
model: MAE model to run.
|
| 144 |
+
input_data: torch.Tensor with shape (B, C, T, H, W).
|
| 145 |
+
mask_ratio: mask ratio to use.
|
| 146 |
+
device: device where model should run.
|
| 147 |
+
Returns:
|
| 148 |
+
3 torch.Tensor with shape (B, C, T, H, W).
|
| 149 |
+
"""
|
| 150 |
+
|
| 151 |
+
with torch.no_grad():
|
| 152 |
+
x = input_data.to(device)
|
| 153 |
+
|
| 154 |
+
_, pred, mask = model(x, mask_ratio)
|
| 155 |
+
|
| 156 |
+
# Create mask and prediction images (un-patchify)
|
| 157 |
+
mask_img = model.unpatchify(mask.unsqueeze(-1).repeat(1, 1, pred.shape[-1])).detach().cpu()
|
| 158 |
+
pred_img = model.unpatchify(pred).detach().cpu()
|
| 159 |
+
|
| 160 |
+
# Mix visible and predicted patches
|
| 161 |
+
rec_img = input_data.clone()
|
| 162 |
+
rec_img[mask_img == 1] = pred_img[mask_img == 1] # binary mask: 0 is keep, 1 is remove
|
| 163 |
+
|
| 164 |
+
# Switch zeros/ones in mask images so masked patches appear darker in plots (better visualization)
|
| 165 |
+
mask_img = (~(mask_img.to(torch.bool))).to(torch.float)
|
| 166 |
+
|
| 167 |
+
return rec_img, mask_img
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
def save_rgb_imgs(input_img, rec_img, mask_img, channels, mean, std, output_dir, meta_data):
|
| 171 |
+
""" Wrapper function to save Geotiff images (original, reconstructed, masked) per timestamp.
|
| 172 |
+
Args:
|
| 173 |
+
input_img: input torch.Tensor with shape (C, T, H, W).
|
| 174 |
+
rec_img: reconstructed torch.Tensor with shape (C, T, H, W).
|
| 175 |
+
mask_img: mask torch.Tensor with shape (C, T, H, W).
|
| 176 |
+
channels: list of indices representing RGB channels.
|
| 177 |
+
mean: list of mean values for each band.
|
| 178 |
+
std: list of std values for each band.
|
| 179 |
+
output_dir: directory where to save outputs.
|
| 180 |
+
meta_data: list of dicts with geotiff meta info.
|
| 181 |
+
"""
|
| 182 |
+
|
| 183 |
+
for t in range(input_img.shape[1]):
|
| 184 |
+
rgb_orig, rgb_pred = process_channel_group(orig_img=input_img[:, t, :, :],
|
| 185 |
+
new_img=rec_img[:, t, :, :],
|
| 186 |
+
channels=channels, data_mean=mean,
|
| 187 |
+
data_std=std)
|
| 188 |
+
|
| 189 |
+
rgb_mask = mask_img[channels, t, :, :] * rgb_orig
|
| 190 |
+
|
| 191 |
+
# Saving images
|
| 192 |
+
|
| 193 |
+
save_geotiff(image=_convert_np_uint8(rgb_orig),
|
| 194 |
+
output_path=os.path.join(output_dir, f"original_rgb_t{t}.tiff"),
|
| 195 |
+
meta=meta_data[t])
|
| 196 |
+
|
| 197 |
+
save_geotiff(image=_convert_np_uint8(rgb_pred),
|
| 198 |
+
output_path=os.path.join(output_dir, f"predicted_rgb_t{t}.tiff"),
|
| 199 |
+
meta=meta_data[t])
|
| 200 |
+
|
| 201 |
+
save_geotiff(image=_convert_np_uint8(rgb_mask),
|
| 202 |
+
output_path=os.path.join(output_dir, f"masked_rgb_t{t}.tiff"),
|
| 203 |
+
meta=meta_data[t])
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
def extract_rgb_imgs(input_img, rec_img, mask_img, channels, mean, std):
|
| 207 |
+
""" Wrapper function to save Geotiff images (original, reconstructed, masked) per timestamp.
|
| 208 |
+
Args:
|
| 209 |
+
input_img: input torch.Tensor with shape (C, T, H, W).
|
| 210 |
+
rec_img: reconstructed torch.Tensor with shape (C, T, H, W).
|
| 211 |
+
mask_img: mask torch.Tensor with shape (C, T, H, W).
|
| 212 |
+
channels: list of indices representing RGB channels.
|
| 213 |
+
mean: list of mean values for each band.
|
| 214 |
+
std: list of std values for each band.
|
| 215 |
+
output_dir: directory where to save outputs.
|
| 216 |
+
meta_data: list of dicts with geotiff meta info.
|
| 217 |
+
"""
|
| 218 |
+
rgb_orig_list = []
|
| 219 |
+
rgb_mask_list = []
|
| 220 |
+
rgb_pred_list = []
|
| 221 |
+
|
| 222 |
+
for t in range(input_img.shape[1]):
|
| 223 |
+
rgb_orig, rgb_pred = process_channel_group(orig_img=input_img[:, t, :, :],
|
| 224 |
+
new_img=rec_img[:, t, :, :],
|
| 225 |
+
channels=channels, data_mean=mean,
|
| 226 |
+
data_std=std)
|
| 227 |
+
|
| 228 |
+
rgb_mask = mask_img[channels, t, :, :] * rgb_orig
|
| 229 |
+
|
| 230 |
+
# extract images
|
| 231 |
+
rgb_orig_list.append(_convert_np_uint8(rgb_orig))
|
| 232 |
+
rgb_mask_list.append(_convert_np_uint8(rgb_mask))
|
| 233 |
+
rgb_pred_list.append(_convert_np_uint8(rgb_pred))
|
| 234 |
+
|
| 235 |
+
outputs = rgb_orig_list + rgb_mask_list + rgb_pred_list
|
| 236 |
+
|
| 237 |
+
return outputs
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def predict_on_images(data_files: list, mask_ratio: float, yaml_file_path: str, checkpoint: str):
|
| 241 |
+
|
| 242 |
+
# os.makedirs(output_dir, exist_ok=True)
|
| 243 |
+
|
| 244 |
+
# Get parameters --------
|
| 245 |
+
|
| 246 |
+
with open(yaml_file_path, 'r') as f:
|
| 247 |
+
params = yaml.safe_load(f)
|
| 248 |
+
|
| 249 |
+
# data related
|
| 250 |
+
num_frames = params['num_frames']
|
| 251 |
+
img_size = params['img_size']
|
| 252 |
+
bands = params['bands']
|
| 253 |
+
mean = params['data_mean']
|
| 254 |
+
std = params['data_std']
|
| 255 |
+
|
| 256 |
+
# model related
|
| 257 |
+
depth = params['depth']
|
| 258 |
+
patch_size = params['patch_size']
|
| 259 |
+
embed_dim = params['embed_dim']
|
| 260 |
+
num_heads = params['num_heads']
|
| 261 |
+
tubelet_size = params['tubelet_size']
|
| 262 |
+
decoder_embed_dim = params['decoder_embed_dim']
|
| 263 |
+
decoder_num_heads = params['decoder_num_heads']
|
| 264 |
+
decoder_depth = params['decoder_depth']
|
| 265 |
+
|
| 266 |
+
batch_size = params['batch_size']
|
| 267 |
+
|
| 268 |
+
mask_ratio = params['mask_ratio'] if mask_ratio is None else mask_ratio
|
| 269 |
+
|
| 270 |
+
# We must have *num_frames* files to build one example!
|
| 271 |
+
assert len(data_files) == num_frames, "File list must be equal to expected number of frames."
|
| 272 |
+
|
| 273 |
+
if torch.cuda.is_available():
|
| 274 |
+
device = torch.device('cuda')
|
| 275 |
+
else:
|
| 276 |
+
device = torch.device('cpu')
|
| 277 |
+
|
| 278 |
+
print(f"Using {device} device.\n")
|
| 279 |
+
|
| 280 |
+
# Loading data ---------------------------------------------------------------------------------
|
| 281 |
+
|
| 282 |
+
input_data, meta_data = load_example(file_paths=data_files, mean=mean, std=std)
|
| 283 |
+
|
| 284 |
+
# Create model and load checkpoint -------------------------------------------------------------
|
| 285 |
+
|
| 286 |
+
model = MaskedAutoencoderViT(
|
| 287 |
+
img_size=img_size,
|
| 288 |
+
patch_size=patch_size,
|
| 289 |
+
num_frames=num_frames,
|
| 290 |
+
tubelet_size=tubelet_size,
|
| 291 |
+
in_chans=len(bands),
|
| 292 |
+
embed_dim=embed_dim,
|
| 293 |
+
depth=depth,
|
| 294 |
+
num_heads=num_heads,
|
| 295 |
+
decoder_embed_dim=decoder_embed_dim,
|
| 296 |
+
decoder_depth=decoder_depth,
|
| 297 |
+
decoder_num_heads=decoder_num_heads,
|
| 298 |
+
mlp_ratio=4.,
|
| 299 |
+
norm_layer=functools.partial(torch.nn.LayerNorm, eps=1e-6),
|
| 300 |
+
norm_pix_loss=False)
|
| 301 |
+
|
| 302 |
+
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
| 303 |
+
print(f"\n--> model has {total_params / 1e6} Million params.\n")
|
| 304 |
+
|
| 305 |
+
model.to(device)
|
| 306 |
+
|
| 307 |
+
state_dict = torch.load(checkpoint, map_location=device)
|
| 308 |
+
model.load_state_dict(state_dict)
|
| 309 |
+
print(f"Loaded checkpoint from {checkpoint}")
|
| 310 |
+
|
| 311 |
+
# Running model --------------------------------------------------------------------------------
|
| 312 |
+
|
| 313 |
+
model.eval()
|
| 314 |
+
channels = [bands.index(b) for b in ['B04', 'B03', 'B02']] # BGR -> RGB
|
| 315 |
+
|
| 316 |
+
# Build sliding window
|
| 317 |
+
batch = torch.tensor(input_data, device='cpu')
|
| 318 |
+
windows = batch.unfold(3, img_size, img_size).unfold(4, img_size, img_size)
|
| 319 |
+
h1, w1 = windows.shape[3:5]
|
| 320 |
+
windows = rearrange(windows, 'b c t h1 w1 h w -> (b h1 w1) c t h w', h=img_size, w=img_size)
|
| 321 |
+
|
| 322 |
+
# Split into batches if number of windows > batch_size
|
| 323 |
+
num_batches = windows.shape[0] // batch_size if windows.shape[0] > batch_size else 1
|
| 324 |
+
windows = torch.tensor_split(windows, num_batches, dim=0)
|
| 325 |
+
|
| 326 |
+
# Run model
|
| 327 |
+
rec_imgs = []
|
| 328 |
+
mask_imgs = []
|
| 329 |
+
for x in windows:
|
| 330 |
+
rec_img, mask_img = run_model(model, x, mask_ratio, device)
|
| 331 |
+
rec_imgs.append(rec_img)
|
| 332 |
+
mask_imgs.append(mask_img)
|
| 333 |
+
|
| 334 |
+
rec_imgs = torch.concat(rec_imgs, dim=0)
|
| 335 |
+
mask_imgs = torch.concat(mask_imgs, dim=0)
|
| 336 |
+
|
| 337 |
+
# Build images from patches
|
| 338 |
+
rec_imgs = rearrange(rec_imgs, '(b h1 w1) c t h w -> b c t (h1 h) (w1 w)',
|
| 339 |
+
h=img_size, w=img_size, b=1, c=len(bands), t=num_frames, h1=h1, w1=w1)
|
| 340 |
+
mask_imgs = rearrange(mask_imgs, '(b h1 w1) c t h w -> b c t (h1 h) (w1 w)',
|
| 341 |
+
h=img_size, w=img_size, b=1, c=len(bands), t=num_frames, h1=h1, w1=w1)
|
| 342 |
+
|
| 343 |
+
# Mix original image with patches
|
| 344 |
+
h, w = rec_imgs.shape[-2:]
|
| 345 |
+
rec_imgs_full = batch.clone()
|
| 346 |
+
rec_imgs_full[..., :h, :w] = rec_imgs
|
| 347 |
+
|
| 348 |
+
mask_imgs_full = torch.ones_like(batch)
|
| 349 |
+
mask_imgs_full[..., :h, :w] = mask_imgs
|
| 350 |
+
|
| 351 |
+
# Build RGB images
|
| 352 |
+
for d in meta_data:
|
| 353 |
+
d.update(count=3, dtype='uint8', compress='lzw', nodata=0)
|
| 354 |
+
|
| 355 |
+
# save_rgb_imgs(batch[0, ...], rec_imgs_full[0, ...], mask_imgs_full[0, ...],
|
| 356 |
+
# channels, mean, std, output_dir, meta_data)
|
| 357 |
+
|
| 358 |
+
outputs = extract_rgb_imgs(batch[0, ...], rec_imgs_full[0, ...], mask_imgs_full[0, ...],
|
| 359 |
+
channels, mean, std)
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
print("Done!")
|
| 363 |
+
|
| 364 |
+
return outputs
|
| 365 |
+
|
| 366 |
+
from huggingface_hub import hf_hub_download
|
| 367 |
+
|
| 368 |
+
yaml_file_path=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M", filename="Prithvi_100M_config.yaml")
|
| 369 |
+
checkpoint=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M", filename='Prithvi_100M.pt')
|
| 370 |
+
|
| 371 |
+
func = partial(predict_on_images, yaml_file_path=yaml_file_path,checkpoint=checkpoint)
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
with gr.Blocks() as demo:
|
| 375 |
+
|
| 376 |
+
with gr.Row():
|
| 377 |
+
with gr.Column():
|
| 378 |
+
inp_files = gr.Files(elem_id='files')
|
| 379 |
+
# inp_slider = gr.Slider(0, 100, value=50, label="Mask ratio", info="Choose ratio of masking between 0 and 100", elem_id='slider'),
|
| 380 |
+
btn = gr.Button("Submit")
|
| 381 |
+
with gr.Row():
|
| 382 |
+
gr.Markdown(value='Original images')
|
| 383 |
+
with gr.Row():
|
| 384 |
+
gr.Markdown(value='T1')
|
| 385 |
+
gr.Markdown(value='T2')
|
| 386 |
+
gr.Markdown(value='T3')
|
| 387 |
+
with gr.Row():
|
| 388 |
+
out1_orig_t1=gr.Image(image_mode='RGB')
|
| 389 |
+
out2_orig_t2 = gr.Image(image_mode='RGB')
|
| 390 |
+
out3_orig_t3 = gr.Image(image_mode='RGB')
|
| 391 |
+
with gr.Row():
|
| 392 |
+
gr.Markdown(value='Masked images')
|
| 393 |
+
with gr.Row():
|
| 394 |
+
gr.Markdown(value='T1')
|
| 395 |
+
gr.Markdown(value='T2')
|
| 396 |
+
gr.Markdown(value='T3')
|
| 397 |
+
with gr.Row():
|
| 398 |
+
out4_masked_t1=gr.Image(image_mode='RGB')
|
| 399 |
+
out5_masked_t2 = gr.Image(image_mode='RGB')
|
| 400 |
+
out6_masked_t3 = gr.Image(image_mode='RGB')
|
| 401 |
+
with gr.Row():
|
| 402 |
+
gr.Markdown(value='Reonstructed images')
|
| 403 |
+
with gr.Row():
|
| 404 |
+
gr.Markdown(value='T1')
|
| 405 |
+
gr.Markdown(value='T2')
|
| 406 |
+
gr.Markdown(value='T3')
|
| 407 |
+
with gr.Row():
|
| 408 |
+
out7_pred_t1=gr.Image(image_mode='RGB')
|
| 409 |
+
out8_pred_t2 = gr.Image(image_mode='RGB')
|
| 410 |
+
out9_pred_t3 = gr.Image(image_mode='RGB')
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
btn.click(fn=func,
|
| 414 |
+
# inputs=[inp_files, inp_slider],
|
| 415 |
+
inputs=inp_files,
|
| 416 |
+
outputs=[out1_orig_t1,
|
| 417 |
+
out2_orig_t2,
|
| 418 |
+
out3_orig_t3,
|
| 419 |
+
out4_masked_t1,
|
| 420 |
+
out5_masked_t2,
|
| 421 |
+
out6_masked_t3,
|
| 422 |
+
out7_pred_t1,
|
| 423 |
+
out8_pred_t2,
|
| 424 |
+
out9_pred_t3])
|
| 425 |
+
|
| 426 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
torchvision
|
| 3 |
+
timm
|
| 4 |
+
rasterio
|
| 5 |
+
einops
|
| 6 |
+
huggingface_hub
|