Spaces:
Running
Running
minor fixes
Browse files- models/fm4m.py +14 -7
models/fm4m.py
CHANGED
|
@@ -308,7 +308,8 @@ def single_modal(model,dataset, downstream_model,params):
|
|
| 308 |
verbose=False)
|
| 309 |
n_samples = np.minimum(1000, len(x_batch))
|
| 310 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
| 311 |
-
x = y_batch.values[:n_samples]
|
|
|
|
| 312 |
index_0 = [index for index in range(len(x)) if x[index] == 0]
|
| 313 |
index_1 = [index for index in range(len(x)) if x[index] == 1]
|
| 314 |
|
|
@@ -340,7 +341,8 @@ def single_modal(model,dataset, downstream_model,params):
|
|
| 340 |
reducer = umap.UMAP(metric='euclidean', n_neighbors= 10, n_components=2, low_memory=True, min_dist=0.1, verbose=False)
|
| 341 |
n_samples = np.minimum(1000,len(x_batch))
|
| 342 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
| 343 |
-
x = y_batch.values[:n_samples]
|
|
|
|
| 344 |
index_0 = [index for index in range(len(x)) if x[index] == 0]
|
| 345 |
index_1 = [index for index in range(len(x)) if x[index] == 1]
|
| 346 |
|
|
@@ -371,7 +373,8 @@ def single_modal(model,dataset, downstream_model,params):
|
|
| 371 |
verbose=False)
|
| 372 |
n_samples = np.minimum(1000, len(x_batch))
|
| 373 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
| 374 |
-
x = y_batch.values[:n_samples]
|
|
|
|
| 375 |
#index_0 = [index for index in range(len(x)) if x[index] == 0]
|
| 376 |
#index_1 = [index for index in range(len(x)) if x[index] == 1]
|
| 377 |
|
|
@@ -398,7 +401,8 @@ def single_modal(model,dataset, downstream_model,params):
|
|
| 398 |
verbose=False)
|
| 399 |
n_samples = np.minimum(1000, len(x_batch))
|
| 400 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
| 401 |
-
x = y_batch.values[:n_samples]
|
|
|
|
| 402 |
# index_0 = [index for index in range(len(x)) if x[index] == 0]
|
| 403 |
# index_1 = [index for index in range(len(x)) if x[index] == 1]
|
| 404 |
|
|
@@ -426,7 +430,8 @@ def single_modal(model,dataset, downstream_model,params):
|
|
| 426 |
verbose=False)
|
| 427 |
n_samples = np.minimum(1000, len(x_batch))
|
| 428 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
| 429 |
-
x = y_batch.values[:n_samples]
|
|
|
|
| 430 |
# index_0 = [index for index in range(len(x)) if x[index] == 0]
|
| 431 |
# index_1 = [index for index in range(len(x)) if x[index] == 1]
|
| 432 |
|
|
@@ -454,7 +459,8 @@ def single_modal(model,dataset, downstream_model,params):
|
|
| 454 |
verbose=False)
|
| 455 |
n_samples = np.minimum(1000, len(x_batch))
|
| 456 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
| 457 |
-
x = y_batch.values[:n_samples]
|
|
|
|
| 458 |
# index_0 = [index for index in range(len(x)) if x[index] == 0]
|
| 459 |
# index_1 = [index for index in range(len(x)) if x[index] == 1]
|
| 460 |
|
|
@@ -546,7 +552,8 @@ def multi_modal(model_list,dataset, downstream_model,params):
|
|
| 546 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
| 547 |
|
| 548 |
if "Classifier" in downstream_model:
|
| 549 |
-
x = y_batch.values[:n_samples]
|
|
|
|
| 550 |
index_0 = [index for index in range(len(x)) if x[index] == 0]
|
| 551 |
index_1 = [index for index in range(len(x)) if x[index] == 1]
|
| 552 |
|
|
|
|
| 308 |
verbose=False)
|
| 309 |
n_samples = np.minimum(1000, len(x_batch))
|
| 310 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
| 311 |
+
try:x = y_batch.values[:n_samples]
|
| 312 |
+
except: x = y_batch[:n_samples]
|
| 313 |
index_0 = [index for index in range(len(x)) if x[index] == 0]
|
| 314 |
index_1 = [index for index in range(len(x)) if x[index] == 1]
|
| 315 |
|
|
|
|
| 341 |
reducer = umap.UMAP(metric='euclidean', n_neighbors= 10, n_components=2, low_memory=True, min_dist=0.1, verbose=False)
|
| 342 |
n_samples = np.minimum(1000,len(x_batch))
|
| 343 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
| 344 |
+
try:x = y_batch.values[:n_samples]
|
| 345 |
+
except:x = y_batch[:n_samples]
|
| 346 |
index_0 = [index for index in range(len(x)) if x[index] == 0]
|
| 347 |
index_1 = [index for index in range(len(x)) if x[index] == 1]
|
| 348 |
|
|
|
|
| 373 |
verbose=False)
|
| 374 |
n_samples = np.minimum(1000, len(x_batch))
|
| 375 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
| 376 |
+
try:x = y_batch.values[:n_samples]
|
| 377 |
+
except:x = y_batch[:n_samples]
|
| 378 |
#index_0 = [index for index in range(len(x)) if x[index] == 0]
|
| 379 |
#index_1 = [index for index in range(len(x)) if x[index] == 1]
|
| 380 |
|
|
|
|
| 401 |
verbose=False)
|
| 402 |
n_samples = np.minimum(1000, len(x_batch))
|
| 403 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
| 404 |
+
try:x = y_batch.values[:n_samples]
|
| 405 |
+
except:x = y_batch[:n_samples]
|
| 406 |
# index_0 = [index for index in range(len(x)) if x[index] == 0]
|
| 407 |
# index_1 = [index for index in range(len(x)) if x[index] == 1]
|
| 408 |
|
|
|
|
| 430 |
verbose=False)
|
| 431 |
n_samples = np.minimum(1000, len(x_batch))
|
| 432 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
| 433 |
+
try:x = y_batch.values[:n_samples]
|
| 434 |
+
except:x = y_batch[:n_samples]
|
| 435 |
# index_0 = [index for index in range(len(x)) if x[index] == 0]
|
| 436 |
# index_1 = [index for index in range(len(x)) if x[index] == 1]
|
| 437 |
|
|
|
|
| 459 |
verbose=False)
|
| 460 |
n_samples = np.minimum(1000, len(x_batch))
|
| 461 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
| 462 |
+
try:x = y_batch.values[:n_samples]
|
| 463 |
+
except:x = y_batch[:n_samples]
|
| 464 |
# index_0 = [index for index in range(len(x)) if x[index] == 0]
|
| 465 |
# index_1 = [index for index in range(len(x)) if x[index] == 1]
|
| 466 |
|
|
|
|
| 552 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
| 553 |
|
| 554 |
if "Classifier" in downstream_model:
|
| 555 |
+
try:x = y_batch.values[:n_samples]
|
| 556 |
+
except:x = y_batch[:n_samples]
|
| 557 |
index_0 = [index for index in range(len(x)) if x[index] == 0]
|
| 558 |
index_1 = [index for index in range(len(x)) if x[index] == 1]
|
| 559 |
|