Spaces:
Running
Running
Enzo Reis de Oliveira
commited on
Commit
·
073cdd9
1
Parent(s):
cbc085f
Better error message for batch
Browse files
app.py
CHANGED
|
@@ -4,14 +4,14 @@ import json
|
|
| 4 |
import pandas as pd
|
| 5 |
import gradio as gr
|
| 6 |
|
| 7 |
-
# 1)
|
| 8 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 9 |
INFERENCE_PATH = os.path.join(BASE_DIR, "smi-ted", "inference")
|
| 10 |
sys.path.insert(0, INFERENCE_PATH)
|
| 11 |
|
| 12 |
from smi_ted_light.load import load_smi_ted
|
| 13 |
|
| 14 |
-
# 2)
|
| 15 |
MODEL_DIR = os.path.join(INFERENCE_PATH, "smi_ted_light")
|
| 16 |
model = load_smi_ted(
|
| 17 |
folder=MODEL_DIR,
|
|
@@ -19,14 +19,15 @@ model = load_smi_ted(
|
|
| 19 |
vocab_filename="bert_vocab_curated.txt",
|
| 20 |
)
|
| 21 |
|
| 22 |
-
# 3) Single function to process either a single SMILES or a CSV of SMILES
|
| 23 |
def process_inputs(smiles: str, file_obj):
|
| 24 |
-
#
|
| 25 |
if file_obj is not None:
|
| 26 |
try:
|
|
|
|
| 27 |
df_in = pd.read_csv(file_obj.name, sep=None, engine='python')
|
| 28 |
|
| 29 |
-
|
|
|
|
| 30 |
if not smiles_cols:
|
| 31 |
return (
|
| 32 |
"Error: The CSV must have a column named 'Smiles' with the respective SMILES.",
|
|
@@ -35,42 +36,68 @@ def process_inputs(smiles: str, file_obj):
|
|
| 35 |
smiles_col = smiles_cols[0]
|
| 36 |
smiles_list = df_in[smiles_col].astype(str).tolist()
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
gr.update(visible=False),
|
| 42 |
-
)
|
| 43 |
|
| 44 |
-
|
| 45 |
for sm in smiles_list:
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
out_df.to_csv("embeddings.csv", index=False)
|
| 52 |
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
return msg, gr.update(value="embeddings.csv", visible=True)
|
| 55 |
|
| 56 |
except Exception as e:
|
| 57 |
return f"Error processing batch: {e}", gr.update(visible=False)
|
| 58 |
|
| 59 |
-
# Modo single
|
| 60 |
smiles = smiles.strip()
|
| 61 |
if not smiles:
|
| 62 |
return "Please enter a SMILES or upload a CSV file.", gr.update(visible=False)
|
| 63 |
try:
|
| 64 |
vec = model.encode(smiles, return_torch=True)[0].tolist()
|
| 65 |
-
# Salva CSV com header
|
| 66 |
cols = ["smiles"] + [f"dim_{i}" for i in range(len(vec))]
|
| 67 |
df_out = pd.DataFrame([[smiles] + vec], columns=cols)
|
| 68 |
df_out.to_csv("embeddings.csv", index=False)
|
| 69 |
return json.dumps(vec), gr.update(value="embeddings.csv", visible=True)
|
| 70 |
-
except Exception
|
| 71 |
return f"The following input '{smiles}' is not a valid SMILES", gr.update(visible=False)
|
| 72 |
|
| 73 |
-
|
|
|
|
| 74 |
with gr.Blocks() as demo:
|
| 75 |
gr.Markdown(
|
| 76 |
"""
|
|
@@ -88,7 +115,7 @@ with gr.Blocks() as demo:
|
|
| 88 |
generate_btn = gr.Button("Extract Embeddings")
|
| 89 |
|
| 90 |
with gr.Row():
|
| 91 |
-
output_msg = gr.Textbox(label="Message / Embedding (JSON)", interactive=False, lines=
|
| 92 |
download_csv = gr.File(label="Download embeddings.csv", visible=False)
|
| 93 |
|
| 94 |
generate_btn.click(
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
import gradio as gr
|
| 6 |
|
| 7 |
+
# 1) Ajusta o path antes de importar o loader
|
| 8 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 9 |
INFERENCE_PATH = os.path.join(BASE_DIR, "smi-ted", "inference")
|
| 10 |
sys.path.insert(0, INFERENCE_PATH)
|
| 11 |
|
| 12 |
from smi_ted_light.load import load_smi_ted
|
| 13 |
|
| 14 |
+
# 2) Carrega o modelo SMI-TED Light
|
| 15 |
MODEL_DIR = os.path.join(INFERENCE_PATH, "smi_ted_light")
|
| 16 |
model = load_smi_ted(
|
| 17 |
folder=MODEL_DIR,
|
|
|
|
| 19 |
vocab_filename="bert_vocab_curated.txt",
|
| 20 |
)
|
| 21 |
|
|
|
|
| 22 |
def process_inputs(smiles: str, file_obj):
|
| 23 |
+
# Modo batch
|
| 24 |
if file_obj is not None:
|
| 25 |
try:
|
| 26 |
+
# autodetecta delimitador (; ou , etc)
|
| 27 |
df_in = pd.read_csv(file_obj.name, sep=None, engine='python')
|
| 28 |
|
| 29 |
+
# procura coluna "smiles" (case‐insensitive)
|
| 30 |
+
smiles_cols = [c for c in df_in.columns if c.lower() == "smiles"]
|
| 31 |
if not smiles_cols:
|
| 32 |
return (
|
| 33 |
"Error: The CSV must have a column named 'Smiles' with the respective SMILES.",
|
|
|
|
| 36 |
smiles_col = smiles_cols[0]
|
| 37 |
smiles_list = df_in[smiles_col].astype(str).tolist()
|
| 38 |
|
| 39 |
+
out_records = []
|
| 40 |
+
invalid_smiles = []
|
| 41 |
+
embed_dim = None
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
# para cada SMILES, tenta gerar embedding
|
| 44 |
for sm in smiles_list:
|
| 45 |
+
try:
|
| 46 |
+
vec = model.encode(sm, return_torch=True)[0].tolist()
|
| 47 |
+
# guarda dimensão do vetor na primeira vez
|
| 48 |
+
if embed_dim is None:
|
| 49 |
+
embed_dim = len(vec)
|
| 50 |
+
# monta registro válido
|
| 51 |
+
record = {"smiles": sm}
|
| 52 |
+
record.update({f"dim_{i}": v for i, v in enumerate(vec)})
|
| 53 |
+
except Exception:
|
| 54 |
+
# marca como inválido
|
| 55 |
+
invalid_smiles.append(sm)
|
| 56 |
+
# se já souber quantos dims, preenche com None
|
| 57 |
+
if embed_dim is not None:
|
| 58 |
+
record = {"smiles": f"SMILES {sm} was invalid"}
|
| 59 |
+
record.update({f"dim_{i}": None for i in range(embed_dim)})
|
| 60 |
+
else:
|
| 61 |
+
# ainda não sabemos quantos dims: só guarda smiles
|
| 62 |
+
record = {"smiles": f"SMILES {sm} was invalid"}
|
| 63 |
+
out_records.append(record)
|
| 64 |
+
|
| 65 |
+
# converte para DataFrame (vai unificar todas as colunas)
|
| 66 |
+
out_df = pd.DataFrame(out_records)
|
| 67 |
out_df.to_csv("embeddings.csv", index=False)
|
| 68 |
|
| 69 |
+
# monta mensagem de saída
|
| 70 |
+
total = len(smiles_list)
|
| 71 |
+
valid = total - len(invalid_smiles)
|
| 72 |
+
if invalid_smiles:
|
| 73 |
+
msg = (
|
| 74 |
+
f"{valid} SMILES were successfully processed, "
|
| 75 |
+
f"{len(invalid_smiles)} had errors:\n"
|
| 76 |
+
+ "\n".join(invalid_smiles)
|
| 77 |
+
)
|
| 78 |
+
else:
|
| 79 |
+
msg = f"Processed batch of {valid} SMILES. Download embeddings.csv."
|
| 80 |
+
|
| 81 |
return msg, gr.update(value="embeddings.csv", visible=True)
|
| 82 |
|
| 83 |
except Exception as e:
|
| 84 |
return f"Error processing batch: {e}", gr.update(visible=False)
|
| 85 |
|
| 86 |
+
# Modo single (sem mudança)
|
| 87 |
smiles = smiles.strip()
|
| 88 |
if not smiles:
|
| 89 |
return "Please enter a SMILES or upload a CSV file.", gr.update(visible=False)
|
| 90 |
try:
|
| 91 |
vec = model.encode(smiles, return_torch=True)[0].tolist()
|
|
|
|
| 92 |
cols = ["smiles"] + [f"dim_{i}" for i in range(len(vec))]
|
| 93 |
df_out = pd.DataFrame([[smiles] + vec], columns=cols)
|
| 94 |
df_out.to_csv("embeddings.csv", index=False)
|
| 95 |
return json.dumps(vec), gr.update(value="embeddings.csv", visible=True)
|
| 96 |
+
except Exception:
|
| 97 |
return f"The following input '{smiles}' is not a valid SMILES", gr.update(visible=False)
|
| 98 |
|
| 99 |
+
|
| 100 |
+
# 4) Interface Gradio (sem mudanças)
|
| 101 |
with gr.Blocks() as demo:
|
| 102 |
gr.Markdown(
|
| 103 |
"""
|
|
|
|
| 115 |
generate_btn = gr.Button("Extract Embeddings")
|
| 116 |
|
| 117 |
with gr.Row():
|
| 118 |
+
output_msg = gr.Textbox(label="Message / Embedding (JSON)", interactive=False, lines=4)
|
| 119 |
download_csv = gr.File(label="Download embeddings.csv", visible=False)
|
| 120 |
|
| 121 |
generate_btn.click(
|