Spaces:
Runtime error
Runtime error
Yotam-Perlitz
commited on
Commit
·
1e20a46
1
Parent(s):
3ce2cf9
update example file
Browse filesSigned-off-by: Yotam-Perlitz <y.perlitz@ibm.com>
- app.py +84 -274
- assets/{mybench.csv → mybench_240901.csv} +0 -0
app.py
CHANGED
|
@@ -7,221 +7,15 @@ import streamlit as st
|
|
| 7 |
from bat import Benchmark, Config, Reporter, Tester
|
| 8 |
|
| 9 |
|
| 10 |
-
def get_nice_benchmark_name(bench_name):
|
| 11 |
-
prettified_names = {
|
| 12 |
-
"holmes": "Holmes",
|
| 13 |
-
"helm_lite_narrativeqa": "Helm Lite NarrativeQA",
|
| 14 |
-
"helm_lite_naturalquestionsopen": "Helm Lite NaturalQuestionsOpen",
|
| 15 |
-
"helm_lite_naturalquestionsclosed": "Helm Lite NaturalQuestionsClosed",
|
| 16 |
-
"helm_lite_openbookqa": "Helm Lite OpenBookQA",
|
| 17 |
-
"helm_lite_mmlu": "Helm Lite MMLU",
|
| 18 |
-
"helm_lite_math_equivalentcot": "Helm Lite MathEquivalentCOT",
|
| 19 |
-
"helm_lite_gsm8k": "Helm Lite GSM8K",
|
| 20 |
-
"helm_lite_legalbench": "Helm Lite LegalBench",
|
| 21 |
-
"helm_lite_medqa": "Helm Lite MedQA",
|
| 22 |
-
"helm_lite_wmt2014": "Helm Lite WMT2014",
|
| 23 |
-
"hfv2_bbh": "HFv2 BBH",
|
| 24 |
-
"hfv2_bbh_raw": "HFv2 BBH Raw",
|
| 25 |
-
"hfv2_gpqa": "HFv2 GPQA",
|
| 26 |
-
"hfv2_ifeval": "HFv2 IFEval",
|
| 27 |
-
"hfv2_math_lvl_5": "HFv2 Math Level 5",
|
| 28 |
-
"hfv2_mmlu_pro": "HFv2 MMLU Pro",
|
| 29 |
-
"hfv2_musr": "HFv2 MuSR",
|
| 30 |
-
"oc_mmlu": "OpenCompass MMLU",
|
| 31 |
-
"oc_mmlu_pro": "OpenCompass MMLU Pro",
|
| 32 |
-
"oc_cmmlu": "OpenCompass CMMLU",
|
| 33 |
-
"oc_bbh": "OpenCompass BBH",
|
| 34 |
-
"oc_gqpa_dimand": "OpenCompass GQPA-Dimand",
|
| 35 |
-
"oc_humaneval": "OpenCompass HumanEval",
|
| 36 |
-
"oc_ifeval": "OpenCompass IFEval",
|
| 37 |
-
"helm_mmlu": "Helm MMLU",
|
| 38 |
-
"helm_boolq": "Helm BoolQ",
|
| 39 |
-
"helm_narrativeqa": "Helm NarrativeQA",
|
| 40 |
-
"helm_naturalquestionsclosed": "Helm NaturalQuestionsClosed",
|
| 41 |
-
"helm_naturalquestionsopen": "Helm NaturalQuestionsOpen",
|
| 42 |
-
"helm_quac": "Helm QuAC",
|
| 43 |
-
"helm_openbookqa": "Helm OpenBookQA",
|
| 44 |
-
"helm_imdb": "Helm IMDB",
|
| 45 |
-
"helm_civilcomments": "Helm CivilComments",
|
| 46 |
-
"helm_raft": "Helm RAFT",
|
| 47 |
-
"mmlu_pro": "MMLU Pro",
|
| 48 |
-
"mixeval_triviaqa": "MixEval TriviaQA",
|
| 49 |
-
"mixeval_mmlu": "MixEval MMLU",
|
| 50 |
-
"mixeval_drop": "MixEval DROP",
|
| 51 |
-
"mixeval_hellaswag": "MixEval HellaSwag",
|
| 52 |
-
"mixeval_commonsenseqa": "MixEval CommonsenseQA",
|
| 53 |
-
"mixeval_triviaqa_hard": "MixEval TriviaQA Hard",
|
| 54 |
-
"mixeval_mmlu_hard": "MixEval MMLU Hard",
|
| 55 |
-
"mixeval_drop_hard": "MixEval DROP Hard",
|
| 56 |
-
"oc_language": "OpenCompass Language",
|
| 57 |
-
"oc_knowledge": "OpenCompass Knowledge",
|
| 58 |
-
"oc_reasoning": "OpenCompass Reasoning",
|
| 59 |
-
"oc_math": "OpenCompass Math",
|
| 60 |
-
"oc_code": "OpenCompass Code",
|
| 61 |
-
"oc_instruct": "OpenCompass Instruction",
|
| 62 |
-
"oc_agent": "OpenCompass Agent",
|
| 63 |
-
"oc_arena": "OpenCompass Arena",
|
| 64 |
-
"lb_reasoning": "LiveBench Reasoning",
|
| 65 |
-
"lb_coding": "LiveBench Coding",
|
| 66 |
-
"lb_mathematics": "LiveBench Mathematics",
|
| 67 |
-
"lb_data_analysis": "LiveBench Data Analysis",
|
| 68 |
-
"lb_language": "LiveBench Language",
|
| 69 |
-
"lb_if": "LiveBench Instruction Following",
|
| 70 |
-
"wb_info_seek": "WildBench Information Seeking",
|
| 71 |
-
"wb_creative": "WildBench Creative",
|
| 72 |
-
"wb_code_debug": "WildBench Code Debugging",
|
| 73 |
-
"wb_math_data": "WildBench Math & Data",
|
| 74 |
-
"wb_reason_plan": "WildBench Reasoning & Planning",
|
| 75 |
-
"wb_score": "WildBench Score",
|
| 76 |
-
"hfv1_arc": "HFv1 ARC",
|
| 77 |
-
"hfv1_gsm8k": "HFv1 GSM8K",
|
| 78 |
-
"hfv1_hellaswag": "HFv1 HellaSwag",
|
| 79 |
-
"hfv1_mmlu": "HFv1 MMLU",
|
| 80 |
-
"hfv1_truthfulqa": "HFv1 TruthfulQA",
|
| 81 |
-
"hfv1_winogrande": "HFv1 Winogrande",
|
| 82 |
-
"biggen_grounding": "BigBench Grounding",
|
| 83 |
-
"biggen_instruction_following": "BigBench Instruction Following",
|
| 84 |
-
"biggen_planning": "BigBench Planning",
|
| 85 |
-
"biggen_reasoning": "BigBench Reasoning",
|
| 86 |
-
"biggen_refinement": "BigBench Refinement",
|
| 87 |
-
"biggen_safety": "BigBench Safety",
|
| 88 |
-
"biggen_theory_of_mind": "BigBench Theory of Mind",
|
| 89 |
-
"biggen_tool_usage": "BigBench Tool Usage",
|
| 90 |
-
"biggen_multilingual": "BigBench Multilingual",
|
| 91 |
-
"lb_reasoning_average": "LiveBench Reasoning Average",
|
| 92 |
-
"lb_coding_average": "LiveBench Coding Average",
|
| 93 |
-
"lb_mathematics_average": "LiveBench Mathematics Average",
|
| 94 |
-
"lb_data_analysis_average": "LiveBench Data Analysis Average",
|
| 95 |
-
"lb_language_average": "LiveBench Language Average",
|
| 96 |
-
"lb_if_average": "LiveBench Instruction Following Average",
|
| 97 |
-
"helm_lite": "Helm Lite",
|
| 98 |
-
"hf_open_llm_v2": "HF OpenLLM v2",
|
| 99 |
-
"opencompass_academic": "OpenCompass Academic",
|
| 100 |
-
"arena_elo": "Arena Elo",
|
| 101 |
-
"helm_classic": "Helm Classic",
|
| 102 |
-
"mixeval": "MixEval",
|
| 103 |
-
"mixeval_hard": "MixEval Hard",
|
| 104 |
-
"opencompass": "OpenCompass",
|
| 105 |
-
"alphacaeval_v2lc": "AlphacaEval v2lc",
|
| 106 |
-
"livebench_240725": "LiveBench 240725",
|
| 107 |
-
"wb_elo_lc": "WildBench Elo LC",
|
| 108 |
-
"arena_hard": "Arena Hard",
|
| 109 |
-
"agentbench": "AgentBench",
|
| 110 |
-
"hf_open_llm_v1": "HF OpenLLM v1",
|
| 111 |
-
"biggen": "BigBench",
|
| 112 |
-
"livebench_240624": "LiveBench 240624",
|
| 113 |
-
"mt_bench": "MT-Bench",
|
| 114 |
-
}
|
| 115 |
-
|
| 116 |
-
if bench_name in prettified_names:
|
| 117 |
-
return prettified_names[bench_name]
|
| 118 |
-
else:
|
| 119 |
-
return bench_name
|
| 120 |
-
|
| 121 |
-
|
| 122 |
holistic_scenarios = [
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
# "mmlu",
|
| 132 |
-
# "math_equivalentcot",
|
| 133 |
-
# "gsm8k",
|
| 134 |
-
# "legalbench",
|
| 135 |
-
# "medqa",
|
| 136 |
-
# "wmt2014",
|
| 137 |
-
# "arc_c",
|
| 138 |
-
# "arc_e",
|
| 139 |
-
# "boolq",
|
| 140 |
-
# "csqa",
|
| 141 |
-
# "hellaswag",
|
| 142 |
-
# "piqa",
|
| 143 |
-
# "siqa",
|
| 144 |
-
# "winogrande",
|
| 145 |
-
# "olmes_average",
|
| 146 |
-
# "bbh",
|
| 147 |
-
# "bbh_raw",
|
| 148 |
-
# "gpqa",
|
| 149 |
-
"hf_open_llm_v2",
|
| 150 |
-
# "ifeval",
|
| 151 |
-
# "math_lvl_5",
|
| 152 |
-
# "mmlu_pro",
|
| 153 |
-
# "musr",
|
| 154 |
-
"opencompass_academic",
|
| 155 |
-
# "oc_mmlu",
|
| 156 |
-
# "oc_mmlu_pro",
|
| 157 |
-
# "oc_cmmlu",
|
| 158 |
-
# "oc_bbh",
|
| 159 |
-
# "oc_gqpa_dimand",
|
| 160 |
-
# "oc_math",
|
| 161 |
-
# "oc_humaneval",
|
| 162 |
-
# "oc_ifeval",
|
| 163 |
-
# "helm_mmlu",
|
| 164 |
-
"arena_elo",
|
| 165 |
-
"helm_classic",
|
| 166 |
-
# "quac",
|
| 167 |
-
# "truthfulqa",
|
| 168 |
-
# "ms_marcoregular",
|
| 169 |
-
# "ms_marcotrec",
|
| 170 |
-
# "cnn/dailymail",
|
| 171 |
-
# "xsum",
|
| 172 |
-
# "imdb",
|
| 173 |
-
# "civilcomments",
|
| 174 |
-
# "raft",
|
| 175 |
-
"mixeval_hard",
|
| 176 |
-
"mixeval",
|
| 177 |
-
# "arena_elo0527",
|
| 178 |
-
"opencompass",
|
| 179 |
-
# "oc_language",
|
| 180 |
-
# "oc_knowledge",
|
| 181 |
-
# "oc_reasoning",
|
| 182 |
-
# "oc_code",
|
| 183 |
-
# "oc_instruct",
|
| 184 |
-
# "oc_agent",
|
| 185 |
-
# "oc_arena",
|
| 186 |
-
"alphacaeval_v2lc",
|
| 187 |
-
"livebench_240725",
|
| 188 |
-
"livebench_240624",
|
| 189 |
-
# "lb_reasoning",
|
| 190 |
-
# "lb_coding",
|
| 191 |
-
# "lb_mathematics",
|
| 192 |
-
# "lb_data_analysis",
|
| 193 |
-
# "lb_language",
|
| 194 |
-
# "lb_if",
|
| 195 |
-
"wb_elo_lc",
|
| 196 |
-
# "wb_info_seek",
|
| 197 |
-
# "wb_creative",
|
| 198 |
-
# "wb_code_debug",
|
| 199 |
-
# "wb_math_data",
|
| 200 |
-
# "wb_reason_plan",
|
| 201 |
-
# "wb_score",
|
| 202 |
-
# "boolqmixed",
|
| 203 |
-
"arena_hard",
|
| 204 |
-
"agentbench",
|
| 205 |
-
# "arc",
|
| 206 |
-
"hf_open_llm_v1",
|
| 207 |
-
"biggen",
|
| 208 |
-
# "biggen_grounding",
|
| 209 |
-
# "biggen_instruction_following",
|
| 210 |
-
# "biggen_planning",
|
| 211 |
-
# "biggen_reasoning",
|
| 212 |
-
# "biggen_refinement",
|
| 213 |
-
# "biggen_safety",
|
| 214 |
-
# "biggen_theory_of_mind",
|
| 215 |
-
# "biggen_tool_usage",
|
| 216 |
-
# "biggen_multilingual",
|
| 217 |
-
# "lb_global_average",
|
| 218 |
-
# "lb_reasoning_average",
|
| 219 |
-
# "lb_coding_average",
|
| 220 |
-
# "lb_mathematics_average",
|
| 221 |
-
# "lb_data_analysis_average",
|
| 222 |
-
# "lb_language_average",
|
| 223 |
-
# "lb_if_average",
|
| 224 |
-
]
|
| 225 |
]
|
| 226 |
|
| 227 |
|
|
@@ -245,30 +39,31 @@ all_scenarios_for_aggragate = (
|
|
| 245 |
st.subheader("The Leaderboard", divider=True)
|
| 246 |
# st.subheader("🏋️♂️ BenchBench Leaderboard 🏋", divider=True)
|
| 247 |
|
| 248 |
-
leftcol, rightcol = st.columns([2, 1])
|
| 249 |
|
| 250 |
-
with st.
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
)
|
| 262 |
|
|
|
|
|
|
|
| 263 |
corr_type = st.selectbox(
|
| 264 |
label="Select Correlation type", options=["kendall", "pearson"], index=0
|
| 265 |
)
|
| 266 |
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
|
|
|
| 272 |
|
| 273 |
model_select_strategy = st.selectbox(
|
| 274 |
label="Select strategy",
|
|
@@ -289,23 +84,25 @@ with st.expander("Leaderboard configurations (defaults are great BTW)", icon="
|
|
| 289 |
|
| 290 |
submitted = st.form_submit_button(label="Run BAT")
|
| 291 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
file_name="mybench.csv",
|
| 298 |
-
mime="text/csv",
|
| 299 |
-
)
|
| 300 |
-
|
| 301 |
-
my_benchmark = Benchmark()
|
| 302 |
-
if uploaded_file is not None:
|
| 303 |
-
df = pd.read_csv(uploaded_file)
|
| 304 |
-
my_benchmark.assign_df(df, data_source="Uploaded Benchmark")
|
| 305 |
|
| 306 |
|
| 307 |
def run_load(
|
| 308 |
-
|
| 309 |
n_models_taken_list=[5],
|
| 310 |
model_select_strategy_list=["random"],
|
| 311 |
corr_types=["kendall"],
|
|
@@ -315,7 +112,7 @@ def run_load(
|
|
| 315 |
):
|
| 316 |
# Create a hash of the inputs to generate a unique cache file for each set of inputs
|
| 317 |
input_str = (
|
| 318 |
-
str(
|
| 319 |
+ str(n_models_taken_list)
|
| 320 |
+ str(model_select_strategy_list)
|
| 321 |
+ str(corr_types)
|
|
@@ -358,25 +155,30 @@ def run_load(
|
|
| 358 |
n_exps=n_exps if n_models_taken_list != [0] else 1,
|
| 359 |
)
|
| 360 |
|
| 361 |
-
holistic = Benchmark()
|
| 362 |
-
holistic.load_local_catalog()
|
| 363 |
-
holistic.df = holistic.df.query("scenario in @holistic_scenarios")
|
|
|
|
|
|
|
| 364 |
|
| 365 |
-
holistic.
|
| 366 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
new_col_name="aggregate",
|
| 368 |
-
agg_source_name="
|
| 369 |
-
|
| 370 |
-
min_scenario_for_models_to_appear_in_agg=
|
| 371 |
)
|
| 372 |
|
| 373 |
-
aggragate_scores =
|
| 374 |
["model", "score"]
|
| 375 |
].sort_values(by="score", ascending=False)
|
| 376 |
|
| 377 |
-
allbench = Benchmark()
|
| 378 |
-
allbench.load_local_catalog()
|
| 379 |
-
|
| 380 |
# allbench.df = allbench.df[~allbench.df["source"].str.contains("livebench")]
|
| 381 |
|
| 382 |
allbench.extend(my_benchmark)
|
|
@@ -384,8 +186,8 @@ def run_load(
|
|
| 384 |
allbench.clear_repeated_scenarios()
|
| 385 |
|
| 386 |
# removing and adding the holistic scenarios
|
| 387 |
-
allbench.df = allbench.df.query("scenario not in @holistic_scenarios")
|
| 388 |
-
allbench = allbench.extend(holistic)
|
| 389 |
|
| 390 |
tester = Tester(cfg=cfg)
|
| 391 |
|
|
@@ -403,7 +205,7 @@ def run_load(
|
|
| 403 |
|
| 404 |
|
| 405 |
agreements, aggragare_score_df = run_load(
|
| 406 |
-
|
| 407 |
n_models_taken_list=n_models_taken_list,
|
| 408 |
model_select_strategy_list=[model_select_strategy],
|
| 409 |
corr_types=[corr_type],
|
|
@@ -422,12 +224,18 @@ z_scores["corr_with_agg"] = z_scores["corr_with_agg"].round(2)
|
|
| 422 |
z_scores["p_value_of_corr_with_agg"] = z_scores["p_value_of_corr_with_agg"].round(2)
|
| 423 |
# z_scores["n_models_of_corr_with_agg"] = z_scores["n_models_of_corr_with_agg"].round(1)
|
| 424 |
|
| 425 |
-
z_scores["date"] = z_scores["source"].apply(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 426 |
|
| 427 |
-
# print(z_scores["scenario"].unique().tolist())
|
| 428 |
|
| 429 |
-
|
| 430 |
|
|
|
|
|
|
|
|
|
|
| 431 |
data = (
|
| 432 |
z_scores.rename(
|
| 433 |
columns={
|
|
@@ -468,24 +276,26 @@ styled_data = (
|
|
| 468 |
vmax=1,
|
| 469 |
)
|
| 470 |
.format(subset=["Z Score", corr_name, "p-value of Corr."], formatter="{:.2}")
|
|
|
|
| 471 |
)
|
| 472 |
|
| 473 |
-
|
| 474 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 475 |
st.dataframe(
|
| 476 |
data=styled_data,
|
| 477 |
-
column_order=
|
| 478 |
-
"Benchmark",
|
| 479 |
-
"Z Score",
|
| 480 |
-
corr_name,
|
| 481 |
-
"p-value of Corr.",
|
| 482 |
-
"Snapshot Date",
|
| 483 |
-
],
|
| 484 |
hide_index=True,
|
| 485 |
use_container_width=True,
|
| 486 |
height=500,
|
|
|
|
| 487 |
)
|
| 488 |
|
|
|
|
| 489 |
aggragare_score_df.rename(
|
| 490 |
columns={
|
| 491 |
"model": "Model",
|
|
@@ -787,7 +597,7 @@ benchmarks = data["Benchmark"].unique().tolist()
|
|
| 787 |
plotted_scenario = st.selectbox(
|
| 788 |
"Choose Benchmark to plot",
|
| 789 |
benchmarks,
|
| 790 |
-
index=benchmarks.index("Arena
|
| 791 |
)
|
| 792 |
|
| 793 |
|
|
|
|
| 7 |
from bat import Benchmark, Config, Reporter, Tester
|
| 8 |
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
holistic_scenarios = [
|
| 11 |
+
"Helm Lite",
|
| 12 |
+
"HF OpenLLM v2",
|
| 13 |
+
"OpenCompass Academic",
|
| 14 |
+
"LMSys Arena",
|
| 15 |
+
"Helm Classic",
|
| 16 |
+
"AlphacaEval v2lc",
|
| 17 |
+
"LiveBench 240725",
|
| 18 |
+
"WildBench Elo LC",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
]
|
| 20 |
|
| 21 |
|
|
|
|
| 39 |
st.subheader("The Leaderboard", divider=True)
|
| 40 |
# st.subheader("🏋️♂️ BenchBench Leaderboard 🏋", divider=True)
|
| 41 |
|
|
|
|
| 42 |
|
| 43 |
+
with st.form("my_form_0"):
|
| 44 |
+
# leftcol, rightcol = st.columns([5, 1])
|
| 45 |
+
# with leftcol:
|
| 46 |
+
aggragate_scenarios = st.multiselect(
|
| 47 |
+
"Scenarios in Aggregate (defualts are the 'Holistic' benchmarks)",
|
| 48 |
+
all_scenarios_for_aggragate,
|
| 49 |
+
holistic_scenarios,
|
| 50 |
+
)
|
| 51 |
+
# with rightcol:
|
| 52 |
+
# st.markdown("###")
|
| 53 |
+
submitted = st.form_submit_button(label="\n\nRun BAT\n\n")
|
|
|
|
| 54 |
|
| 55 |
+
with st.expander("Leaderboard configurations (defaults are great BTW)", icon="⚙️"):
|
| 56 |
+
with st.form("my_form_1"):
|
| 57 |
corr_type = st.selectbox(
|
| 58 |
label="Select Correlation type", options=["kendall", "pearson"], index=0
|
| 59 |
)
|
| 60 |
|
| 61 |
+
aggragate_scenario_whitelist = aggragate_scenarios
|
| 62 |
+
# [
|
| 63 |
+
# scen
|
| 64 |
+
# for scen in all_scenarios_for_aggragate
|
| 65 |
+
# if scen not in aggragate_scenarios
|
| 66 |
+
# ]
|
| 67 |
|
| 68 |
model_select_strategy = st.selectbox(
|
| 69 |
label="Select strategy",
|
|
|
|
| 84 |
|
| 85 |
submitted = st.form_submit_button(label="Run BAT")
|
| 86 |
|
| 87 |
+
with st.expander("Add your benchmarks here!", icon="🔥"):
|
| 88 |
+
uploaded_file = st.file_uploader("Add your benchmark as a CSV")
|
| 89 |
+
st.download_button(
|
| 90 |
+
label="Download example CSV",
|
| 91 |
+
data=pd.read_csv("assets/mybench_240901.csv")
|
| 92 |
+
.to_csv(index=False)
|
| 93 |
+
.encode("utf-8"),
|
| 94 |
+
file_name="mybench_240901.csv",
|
| 95 |
+
mime="text/csv",
|
| 96 |
+
)
|
| 97 |
|
| 98 |
+
my_benchmark = Benchmark()
|
| 99 |
+
if uploaded_file is not None:
|
| 100 |
+
df = pd.read_csv(uploaded_file)
|
| 101 |
+
my_benchmark.assign_df(df, data_source="Uploaded Benchmark")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
|
| 104 |
def run_load(
|
| 105 |
+
aggregate_scenario_whitelist,
|
| 106 |
n_models_taken_list=[5],
|
| 107 |
model_select_strategy_list=["random"],
|
| 108 |
corr_types=["kendall"],
|
|
|
|
| 112 |
):
|
| 113 |
# Create a hash of the inputs to generate a unique cache file for each set of inputs
|
| 114 |
input_str = (
|
| 115 |
+
str(aggregate_scenario_whitelist)
|
| 116 |
+ str(n_models_taken_list)
|
| 117 |
+ str(model_select_strategy_list)
|
| 118 |
+ str(corr_types)
|
|
|
|
| 155 |
n_exps=n_exps if n_models_taken_list != [0] else 1,
|
| 156 |
)
|
| 157 |
|
| 158 |
+
# holistic = Benchmark()
|
| 159 |
+
# holistic.load_local_catalog()
|
| 160 |
+
# holistic.df = holistic.df.query("scenario in @holistic_scenarios")
|
| 161 |
+
|
| 162 |
+
# holistic.clear_repeated_scenarios()
|
| 163 |
|
| 164 |
+
# aggragate_scores = holistic.df.query('scenario=="aggregate"')[
|
| 165 |
+
# ["model", "score"]
|
| 166 |
+
# ].sort_values(by="score", ascending=False)
|
| 167 |
+
|
| 168 |
+
allbench = Benchmark()
|
| 169 |
+
allbench.load_local_catalog()
|
| 170 |
+
|
| 171 |
+
allbench.add_aggregate(
|
| 172 |
new_col_name="aggregate",
|
| 173 |
+
agg_source_name="aggregate",
|
| 174 |
+
scenario_whitelist=aggregate_scenario_whitelist,
|
| 175 |
+
min_scenario_for_models_to_appear_in_agg=1,
|
| 176 |
)
|
| 177 |
|
| 178 |
+
aggragate_scores = allbench.df.query('scenario=="aggregate"')[
|
| 179 |
["model", "score"]
|
| 180 |
].sort_values(by="score", ascending=False)
|
| 181 |
|
|
|
|
|
|
|
|
|
|
| 182 |
# allbench.df = allbench.df[~allbench.df["source"].str.contains("livebench")]
|
| 183 |
|
| 184 |
allbench.extend(my_benchmark)
|
|
|
|
| 186 |
allbench.clear_repeated_scenarios()
|
| 187 |
|
| 188 |
# removing and adding the holistic scenarios
|
| 189 |
+
# allbench.df = allbench.df.query("scenario not in @holistic_scenarios")
|
| 190 |
+
# allbench = allbench.extend(holistic)
|
| 191 |
|
| 192 |
tester = Tester(cfg=cfg)
|
| 193 |
|
|
|
|
| 205 |
|
| 206 |
|
| 207 |
agreements, aggragare_score_df = run_load(
|
| 208 |
+
aggregate_scenario_whitelist=aggragate_scenario_whitelist,
|
| 209 |
n_models_taken_list=n_models_taken_list,
|
| 210 |
model_select_strategy_list=[model_select_strategy],
|
| 211 |
corr_types=[corr_type],
|
|
|
|
| 224 |
z_scores["p_value_of_corr_with_agg"] = z_scores["p_value_of_corr_with_agg"].round(2)
|
| 225 |
# z_scores["n_models_of_corr_with_agg"] = z_scores["n_models_of_corr_with_agg"].round(1)
|
| 226 |
|
| 227 |
+
z_scores["date"] = z_scores["source"].apply(
|
| 228 |
+
lambda x: x.split(".csv")[0].split("_")[-1]
|
| 229 |
+
if "frozen" not in x
|
| 230 |
+
else x.split(".csv")[0].split("_")[-2]
|
| 231 |
+
)
|
| 232 |
|
|
|
|
| 233 |
|
| 234 |
+
# print(z_scores["scenario"].unique().tolist())
|
| 235 |
|
| 236 |
+
# z_scores["scenario"] = z_scores["scenario"].apply(lambda x: get_nice_benchmark_name(x))
|
| 237 |
+
z_scores["date"] = pd.to_datetime("20" + z_scores["date"]).dt.date
|
| 238 |
+
# , format="%y%m%d"
|
| 239 |
data = (
|
| 240 |
z_scores.rename(
|
| 241 |
columns={
|
|
|
|
| 276 |
vmax=1,
|
| 277 |
)
|
| 278 |
.format(subset=["Z Score", corr_name, "p-value of Corr."], formatter="{:.2}")
|
| 279 |
+
.set_properties(**{"text-align": "center"})
|
| 280 |
)
|
| 281 |
|
| 282 |
+
cols_used = [
|
| 283 |
+
"Benchmark",
|
| 284 |
+
"Z Score",
|
| 285 |
+
corr_name,
|
| 286 |
+
"p-value of Corr.",
|
| 287 |
+
"Snapshot Date",
|
| 288 |
+
]
|
| 289 |
st.dataframe(
|
| 290 |
data=styled_data,
|
| 291 |
+
column_order=cols_used,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
hide_index=True,
|
| 293 |
use_container_width=True,
|
| 294 |
height=500,
|
| 295 |
+
column_config={col: {"alignment": "center"} for col in cols_used},
|
| 296 |
)
|
| 297 |
|
| 298 |
+
|
| 299 |
aggragare_score_df.rename(
|
| 300 |
columns={
|
| 301 |
"model": "Model",
|
|
|
|
| 597 |
plotted_scenario = st.selectbox(
|
| 598 |
"Choose Benchmark to plot",
|
| 599 |
benchmarks,
|
| 600 |
+
index=benchmarks.index("LMSys Arena"),
|
| 601 |
)
|
| 602 |
|
| 603 |
|
assets/{mybench.csv → mybench_240901.csv}
RENAMED
|
File without changes
|