Spaces:
Runtime error
Runtime error
Commit
·
022cccc
1
Parent(s):
4c8737b
version working with two demos and possibly multi-models
Browse files- new_app.py +181 -49
new_app.py
CHANGED
|
@@ -43,21 +43,21 @@ class MammalTask(ABC):
|
|
| 43 |
self.description = None
|
| 44 |
self._demo = None
|
| 45 |
|
| 46 |
-
@abstractmethod
|
| 47 |
-
def
|
| 48 |
-
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
|
| 59 |
@abstractmethod
|
| 60 |
-
def crate_sample_dict(self,
|
| 61 |
"""Formatting prompt to match pre-training syntax
|
| 62 |
|
| 63 |
Args:
|
|
@@ -72,19 +72,25 @@ class MammalTask(ABC):
|
|
| 72 |
def run_model(self, sample_dict, model:Mammal):
|
| 73 |
raise NotImplementedError()
|
| 74 |
|
| 75 |
-
|
| 76 |
-
def create_demo(self, model_name_dropdown):
|
| 77 |
"""create an gradio demo group
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
"""
|
| 82 |
raise NotImplementedError()
|
| 83 |
|
|
|
|
| 84 |
|
| 85 |
-
def demo(self,
|
| 86 |
if self._demo is None:
|
| 87 |
-
|
|
|
|
| 88 |
return self._demo
|
| 89 |
|
| 90 |
@abstractmethod
|
|
@@ -103,7 +109,7 @@ all_models= dict()
|
|
| 103 |
|
| 104 |
class PpiTask(MammalTask):
|
| 105 |
def __init__(self):
|
| 106 |
-
super().__init__(name="
|
| 107 |
self.description = "Protein-Protein Interaction (PPI)"
|
| 108 |
self.examples = {
|
| 109 |
"protein_calmodulin": "MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMISELDQDGFIDKEDLHDGDGKISFEEFLNLVNKEMTADVDGDGQVNYEEFVTMMTSK",
|
|
@@ -138,17 +144,18 @@ class PpiTask(MammalTask):
|
|
| 138 |
Returns:
|
| 139 |
str: prompt
|
| 140 |
"""
|
| 141 |
-
prompt = "<@TOKENIZER-TYPE=AA><BINDING_AFFINITY_CLASS><SENTINEL_ID_0>"\
|
| 142 |
"<MOLECULAR_ENTITY><MOLECULAR_ENTITY_GENERAL_PROTEIN>"\
|
| 143 |
-
|
| 144 |
"<MOLECULAR_ENTITY><MOLECULAR_ENTITY_GENERAL_PROTEIN>"\
|
| 145 |
-
|
| 146 |
return prompt
|
| 147 |
|
| 148 |
|
| 149 |
-
def crate_sample_dict(self,
|
| 150 |
# Create and load sample
|
| 151 |
sample_dict = dict()
|
|
|
|
| 152 |
sample_dict[ENCODER_INPUTS_STR] = prompt
|
| 153 |
|
| 154 |
# Tokenize
|
|
@@ -176,7 +183,7 @@ class PpiTask(MammalTask):
|
|
| 176 |
)
|
| 177 |
return batch_dict
|
| 178 |
|
| 179 |
-
def decode_output(self,batch_dict, model_holder):
|
| 180 |
|
| 181 |
# Get output
|
| 182 |
generated_output = model_holder.tokenizer_op._tokenizer.decode(batch_dict[CLS_PRED][0])
|
|
@@ -187,14 +194,17 @@ class PpiTask(MammalTask):
|
|
| 187 |
|
| 188 |
def create_and_run_prompt(self,model_name,protein1, protein2):
|
| 189 |
model_holder = all_models[model_name]
|
| 190 |
-
|
| 191 |
-
|
|
|
|
|
|
|
|
|
|
| 192 |
batch_dict = self.run_model(sample_dict=sample_dict, model=model_holder.model)
|
| 193 |
res = prompt, *self.decode_output(batch_dict,model_holder=model_holder)
|
| 194 |
return res
|
| 195 |
|
| 196 |
|
| 197 |
-
def create_demo(self,
|
| 198 |
|
| 199 |
# """
|
| 200 |
# ### Using the model from
|
|
@@ -219,7 +229,7 @@ class PpiTask(MammalTask):
|
|
| 219 |
value=self.examples["protein_calcineurin"],
|
| 220 |
)
|
| 221 |
with gr.Row():
|
| 222 |
-
run_mammal = gr.Button(
|
| 223 |
"Run Mammal prompt for Protein-Protein Interaction", variant="primary"
|
| 224 |
)
|
| 225 |
with gr.Row():
|
|
@@ -229,63 +239,185 @@ class PpiTask(MammalTask):
|
|
| 229 |
decoded = gr.Textbox(label="Mammal output")
|
| 230 |
run_mammal.click(
|
| 231 |
fn=self.create_and_run_prompt,
|
| 232 |
-
inputs=[
|
| 233 |
outputs=[prompt_box, decoded, gr.Number(label="PPI score")],
|
| 234 |
)
|
| 235 |
with gr.Row():
|
| 236 |
gr.Markdown(
|
| 237 |
"```<SENTINEL_ID_0>``` contains the binding affinity class, which is ```<1>``` for interacting and ```<0>``` for non-interacting"
|
| 238 |
)
|
| 239 |
-
demo.visible =
|
| 240 |
return demo
|
| 241 |
|
| 242 |
ppi_task = PpiTask()
|
| 243 |
all_tasks[ppi_task.name]=ppi_task
|
| 244 |
|
| 245 |
-
ppi_model = MammalObjectBroker(model_path="ibm/biomed.omics.bl.sm.ma-ted-458m", task_list=["PPI"])
|
| 246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
all_models[ppi_model.name]=ppi_model
|
| 248 |
-
|
| 249 |
-
|
|
|
|
| 250 |
|
| 251 |
|
| 252 |
def create_application():
|
| 253 |
def task_change(value):
|
|
|
|
|
|
|
| 254 |
choices=[model_name for model_name, model in all_models.items() if value in model.tasks]
|
| 255 |
if choices:
|
| 256 |
-
return gr.update(choices=choices, value=choices[0])
|
| 257 |
else:
|
| 258 |
-
return
|
| 259 |
# return model_name_dropdown
|
| 260 |
|
| 261 |
|
| 262 |
-
with gr.Blocks() as
|
| 263 |
task_dropdown = gr.Dropdown(choices=["select demo"] + list(all_tasks.keys()))
|
| 264 |
task_dropdown.interactive = True
|
| 265 |
model_name_dropdown = gr.Dropdown(choices=[model_name for model_name, model in all_models.items() if task_dropdown.value in model.tasks], interactive=True)
|
| 266 |
-
task_dropdown.change(task_change,inputs=[task_dropdown],outputs=[model_name_dropdown])
|
| 267 |
|
| 268 |
|
| 269 |
|
| 270 |
|
| 271 |
|
| 272 |
-
ppi_demo = all_tasks[
|
| 273 |
-
ppi_demo.visible = True
|
| 274 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
|
| 276 |
-
def set_ppi_vis(main_text):
|
| 277 |
-
main_text=main_text
|
| 278 |
-
print(f"main text is {main_text}")
|
| 279 |
-
return gr.Group(visible=True)
|
| 280 |
-
#return gr.Group(visible=(main_text == "PPI"))
|
| 281 |
-
# , gr.Group( visible=(main_text == "DTI") )
|
| 282 |
|
| 283 |
-
task_dropdown.change(
|
| 284 |
-
set_ppi_vis, inputs=task_dropdown, outputs=[ppi_demo]
|
| 285 |
-
)
|
| 286 |
-
return
|
| 287 |
|
| 288 |
full_demo=None
|
|
|
|
| 289 |
def main():
|
| 290 |
global full_demo
|
| 291 |
full_demo = create_application()
|
|
|
|
| 43 |
self.description = None
|
| 44 |
self._demo = None
|
| 45 |
|
| 46 |
+
# @abstractmethod
|
| 47 |
+
# def _generate_prompt(self, **kwargs) -> str:
|
| 48 |
+
# """Formatting prompt to match pre-training syntax
|
| 49 |
|
| 50 |
+
# Args:
|
| 51 |
+
# prot1 (_type_): _description_
|
| 52 |
+
# prot2 (_type_): _description_
|
| 53 |
|
| 54 |
+
# Raises:
|
| 55 |
+
# No: _description_
|
| 56 |
+
# """
|
| 57 |
+
# raise NotImplementedError()
|
| 58 |
|
| 59 |
@abstractmethod
|
| 60 |
+
def crate_sample_dict(self,sample_inputs: dict, model_holder:MammalObjectBroker) -> dict:
|
| 61 |
"""Formatting prompt to match pre-training syntax
|
| 62 |
|
| 63 |
Args:
|
|
|
|
| 72 |
def run_model(self, sample_dict, model:Mammal):
|
| 73 |
raise NotImplementedError()
|
| 74 |
|
| 75 |
+
def create_demo(self, model_name_widget: gr.component) -> gr.Group:
|
|
|
|
| 76 |
"""create an gradio demo group
|
| 77 |
|
| 78 |
+
Args:
|
| 79 |
+
model_name_widgit (gr.Component): widget holding the model name to use. This is needed to create
|
| 80 |
+
gradio actions with the current model name as an input
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
Raises:
|
| 84 |
+
NotImplementedError: _description_
|
| 85 |
"""
|
| 86 |
raise NotImplementedError()
|
| 87 |
|
| 88 |
+
|
| 89 |
|
| 90 |
+
def demo(self,model_name_widgit:gr.component=None):
|
| 91 |
if self._demo is None:
|
| 92 |
+
model_name_widget:gr.component
|
| 93 |
+
self._demo = self.create_demo(model_name_widget=model_name_widgit)
|
| 94 |
return self._demo
|
| 95 |
|
| 96 |
@abstractmethod
|
|
|
|
| 109 |
|
| 110 |
class PpiTask(MammalTask):
|
| 111 |
def __init__(self):
|
| 112 |
+
super().__init__(name="Protein-Protein Interaction")
|
| 113 |
self.description = "Protein-Protein Interaction (PPI)"
|
| 114 |
self.examples = {
|
| 115 |
"protein_calmodulin": "MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMISELDQDGFIDKEDLHDGDGKISFEEFLNLVNKEMTADVDGDGQVNYEEFVTMMTSK",
|
|
|
|
| 144 |
Returns:
|
| 145 |
str: prompt
|
| 146 |
"""
|
| 147 |
+
prompt = f"<@TOKENIZER-TYPE=AA><BINDING_AFFINITY_CLASS><SENTINEL_ID_0>"\
|
| 148 |
"<MOLECULAR_ENTITY><MOLECULAR_ENTITY_GENERAL_PROTEIN>"\
|
| 149 |
+
"<SEQUENCE_NATURAL_START>{prot1}<SEQUENCE_NATURAL_END>"\
|
| 150 |
"<MOLECULAR_ENTITY><MOLECULAR_ENTITY_GENERAL_PROTEIN>"\
|
| 151 |
+
"<SEQUENCE_NATURAL_START>{prot2}<SEQUENCE_NATURAL_END><EOS>"
|
| 152 |
return prompt
|
| 153 |
|
| 154 |
|
| 155 |
+
def crate_sample_dict(self,sample_inputs: dict, model_holder:MammalObjectBroker):
|
| 156 |
# Create and load sample
|
| 157 |
sample_dict = dict()
|
| 158 |
+
prompt = self.generate_prompt(*sample_inputs)
|
| 159 |
sample_dict[ENCODER_INPUTS_STR] = prompt
|
| 160 |
|
| 161 |
# Tokenize
|
|
|
|
| 183 |
)
|
| 184 |
return batch_dict
|
| 185 |
|
| 186 |
+
def decode_output(self,batch_dict, model_holder:MammalObjectBroker):
|
| 187 |
|
| 188 |
# Get output
|
| 189 |
generated_output = model_holder.tokenizer_op._tokenizer.decode(batch_dict[CLS_PRED][0])
|
|
|
|
| 194 |
|
| 195 |
def create_and_run_prompt(self,model_name,protein1, protein2):
|
| 196 |
model_holder = all_models[model_name]
|
| 197 |
+
sample_inputs = {"prot1":protein1,
|
| 198 |
+
"prot2":protein2
|
| 199 |
+
}
|
| 200 |
+
sample_dict = self.crate_sample_dict(sample_inputs=sample_inputs, model_holder=model_holder)
|
| 201 |
+
prompt = sample_dict[ENCODER_INPUTS_STR]
|
| 202 |
batch_dict = self.run_model(sample_dict=sample_dict, model=model_holder.model)
|
| 203 |
res = prompt, *self.decode_output(batch_dict,model_holder=model_holder)
|
| 204 |
return res
|
| 205 |
|
| 206 |
|
| 207 |
+
def create_demo(self,model_name_widget:gr.component):
|
| 208 |
|
| 209 |
# """
|
| 210 |
# ### Using the model from
|
|
|
|
| 229 |
value=self.examples["protein_calcineurin"],
|
| 230 |
)
|
| 231 |
with gr.Row():
|
| 232 |
+
run_mammal: gr.Button = gr.Button(
|
| 233 |
"Run Mammal prompt for Protein-Protein Interaction", variant="primary"
|
| 234 |
)
|
| 235 |
with gr.Row():
|
|
|
|
| 239 |
decoded = gr.Textbox(label="Mammal output")
|
| 240 |
run_mammal.click(
|
| 241 |
fn=self.create_and_run_prompt,
|
| 242 |
+
inputs=[model_name_widget, prot1, prot2],
|
| 243 |
outputs=[prompt_box, decoded, gr.Number(label="PPI score")],
|
| 244 |
)
|
| 245 |
with gr.Row():
|
| 246 |
gr.Markdown(
|
| 247 |
"```<SENTINEL_ID_0>``` contains the binding affinity class, which is ```<1>``` for interacting and ```<0>``` for non-interacting"
|
| 248 |
)
|
| 249 |
+
demo.visible = False
|
| 250 |
return demo
|
| 251 |
|
| 252 |
ppi_task = PpiTask()
|
| 253 |
all_tasks[ppi_task.name]=ppi_task
|
| 254 |
|
|
|
|
| 255 |
|
| 256 |
+
class DtiTask(MammalTask):
|
| 257 |
+
def __init__(self):
|
| 258 |
+
super().__init__(name="Drug-Target Binding Affinity")
|
| 259 |
+
self.description = "Drug-Target Binding Affinity (tdi)"
|
| 260 |
+
self.examples = {
|
| 261 |
+
"target_seq": "NLMKRCTRGFRKLGKCTTLEEEKCKTLYPRGQCTCSDSKMNTHSCDCKSC",
|
| 262 |
+
"drug_seq":"CC(=O)NCCC1=CNc2c1cc(OC)cc2"
|
| 263 |
+
}
|
| 264 |
+
self.markup_text = """
|
| 265 |
+
# Mammal based Target-Drug binding affinity demonstration
|
| 266 |
+
|
| 267 |
+
Given a protein sequence and a drug (in SMILES), estimate the binding affinity.
|
| 268 |
+
"""
|
| 269 |
+
|
| 270 |
+
def crate_sample_dict(self, sample_inputs:dict, model_holder:MammalObjectBroker):
|
| 271 |
+
"""convert sample_inputs to sample_dict including creating a proper prompt
|
| 272 |
+
|
| 273 |
+
Args:
|
| 274 |
+
sample_inputs (dict): dictionary containing the inputs to the model
|
| 275 |
+
model_holder (MammalObjectBroker): model holder
|
| 276 |
+
Returns:
|
| 277 |
+
dict: sample_dict for feeding into model
|
| 278 |
+
"""
|
| 279 |
+
sample_dict = dict(sample_inputs)
|
| 280 |
+
sample_dict = DtiBindingdbKdTask.data_preprocessing(
|
| 281 |
+
sample_dict=sample_dict,
|
| 282 |
+
tokenizer_op=model_holder.tokenizer_op,
|
| 283 |
+
target_sequence_key="target_seq",
|
| 284 |
+
drug_sequence_key="drug_seq",
|
| 285 |
+
norm_y_mean=None,
|
| 286 |
+
norm_y_std=None,
|
| 287 |
+
device=model_holder.model.device,
|
| 288 |
+
)
|
| 289 |
+
return sample_dict
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
def run_model(self, sample_dict, model: Mammal):
|
| 293 |
+
# Generate Prediction
|
| 294 |
+
batch_dict = model.generate(
|
| 295 |
+
[sample_dict],
|
| 296 |
+
output_scores=True,
|
| 297 |
+
return_dict_in_generate=True,
|
| 298 |
+
max_new_tokens=5,
|
| 299 |
+
)
|
| 300 |
+
return batch_dict
|
| 301 |
+
|
| 302 |
+
def decode_output(self,batch_dict, model_holder):
|
| 303 |
+
|
| 304 |
+
# Get output
|
| 305 |
+
generated_output = model_holder.tokenizer_op._tokenizer.decode(batch_dict[CLS_PRED][0])
|
| 306 |
+
score = batch_dict["model.out.scores"][0][1][self.positive_token_id(model_holder)].item()
|
| 307 |
+
|
| 308 |
+
return generated_output, score
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
def create_and_run_prompt(self,model_name,target_seq, drug_seq):
|
| 312 |
+
model_holder = all_models[model_name]
|
| 313 |
+
inputs = {
|
| 314 |
+
"target_seq": target_seq,
|
| 315 |
+
"drug_seq": drug_seq,
|
| 316 |
+
}
|
| 317 |
+
sample_dict = self.crate_sample_dict(sample_inputs=inputs, model_holder=model_holder)
|
| 318 |
+
prompt=sample_dict[ENCODER_INPUTS_STR]
|
| 319 |
+
batch_dict = self.run_model(sample_dict=sample_dict, model=model_holder.model)
|
| 320 |
+
res = prompt, *self.decode_output(batch_dict,model_holder=model_holder)
|
| 321 |
+
return res
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
def create_demo(self,model_name_widget):
|
| 325 |
+
|
| 326 |
+
# """
|
| 327 |
+
# ### Using the model from
|
| 328 |
+
|
| 329 |
+
# ```{model} ```
|
| 330 |
+
# """
|
| 331 |
+
with gr.Group() as demo:
|
| 332 |
+
gr.Markdown(self.markup_text)
|
| 333 |
+
with gr.Row():
|
| 334 |
+
target_textbox = gr.Textbox(
|
| 335 |
+
label="target sequence",
|
| 336 |
+
# info="standard",
|
| 337 |
+
interactive=True,
|
| 338 |
+
lines=3,
|
| 339 |
+
value=self.examples["target_seq"],
|
| 340 |
+
)
|
| 341 |
+
drug_textbox = gr.Textbox(
|
| 342 |
+
label="Drug sequance (in SMILES)",
|
| 343 |
+
# info="standard",
|
| 344 |
+
interactive=True,
|
| 345 |
+
lines=3,
|
| 346 |
+
value=self.examples["drug_seq"],
|
| 347 |
+
)
|
| 348 |
+
with gr.Row():
|
| 349 |
+
run_mammal = gr.Button(
|
| 350 |
+
"Run Mammal prompt for Protein-Protein Interaction", variant="primary"
|
| 351 |
+
)
|
| 352 |
+
with gr.Row():
|
| 353 |
+
prompt_box = gr.Textbox(label="Mammal prompt", lines=5)
|
| 354 |
+
|
| 355 |
+
with gr.Row():
|
| 356 |
+
decoded = gr.Textbox(label="Mammal output")
|
| 357 |
+
run_mammal.click(
|
| 358 |
+
fn=self.create_and_run_prompt,
|
| 359 |
+
inputs=[model_name_widget, target_textbox, drug_textbox],
|
| 360 |
+
outputs=[prompt_box, decoded, gr.Number(label="PPI score")],
|
| 361 |
+
)
|
| 362 |
+
with gr.Row():
|
| 363 |
+
gr.Markdown(
|
| 364 |
+
"```<SENTINEL_ID_0>``` contains the binding affinity class, which is ```<1>``` for interacting and ```<0>``` for non-interacting"
|
| 365 |
+
)
|
| 366 |
+
demo.visible = False
|
| 367 |
+
return demo
|
| 368 |
+
|
| 369 |
+
tdi_task = DtiTask()
|
| 370 |
+
all_tasks[tdi_task.name]=tdi_task
|
| 371 |
+
|
| 372 |
+
ppi_model = MammalObjectBroker(model_path="ibm/biomed.omics.bl.sm.ma-ted-458m", task_list=[ppi_task.name])
|
| 373 |
all_models[ppi_model.name]=ppi_model
|
| 374 |
+
|
| 375 |
+
tdi_model = MammalObjectBroker(model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd", task_list=[tdi_task.name])
|
| 376 |
+
all_models[tdi_model.name]=tdi_model
|
| 377 |
|
| 378 |
|
| 379 |
def create_application():
|
| 380 |
def task_change(value):
|
| 381 |
+
visibility = [gr.update(visible=(task==value)) for task in all_tasks.keys()]
|
| 382 |
+
# all_tasks[task].demo().visible =
|
| 383 |
choices=[model_name for model_name, model in all_models.items() if value in model.tasks]
|
| 384 |
if choices:
|
| 385 |
+
return (gr.update(choices=choices, value=choices[0]),*visibility)
|
| 386 |
else:
|
| 387 |
+
return (gr.skip,*visibility)
|
| 388 |
# return model_name_dropdown
|
| 389 |
|
| 390 |
|
| 391 |
+
with gr.Blocks() as application:
|
| 392 |
task_dropdown = gr.Dropdown(choices=["select demo"] + list(all_tasks.keys()))
|
| 393 |
task_dropdown.interactive = True
|
| 394 |
model_name_dropdown = gr.Dropdown(choices=[model_name for model_name, model in all_models.items() if task_dropdown.value in model.tasks], interactive=True)
|
|
|
|
| 395 |
|
| 396 |
|
| 397 |
|
| 398 |
|
| 399 |
|
| 400 |
+
ppi_demo = all_tasks[ppi_task.name].demo(model_name_widgit = model_name_dropdown)
|
| 401 |
+
# ppi_demo.visible = True
|
| 402 |
+
dtb_demo = all_tasks[tdi_task.name].demo(model_name_widgit = model_name_dropdown)
|
| 403 |
+
|
| 404 |
+
task_dropdown.change(task_change,inputs=[task_dropdown],outputs=[model_name_dropdown]+[all_tasks[task].demo() for task in all_tasks])
|
| 405 |
+
|
| 406 |
+
# def set_demo_vis(main_text):
|
| 407 |
+
# main_text=main_text
|
| 408 |
+
# print(f"main text is {main_text}")
|
| 409 |
+
# return gr.Group(visible=True)
|
| 410 |
+
# #return gr.Group(visible=(main_text == "PPI"))
|
| 411 |
+
# # , gr.Group( visible=(main_text == "DTI") )
|
| 412 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 413 |
|
| 414 |
+
# task_dropdown.change(
|
| 415 |
+
# set_ppi_vis, inputs=task_dropdown, outputs=[ppi_demo]
|
| 416 |
+
# )
|
| 417 |
+
return application
|
| 418 |
|
| 419 |
full_demo=None
|
| 420 |
+
|
| 421 |
def main():
|
| 422 |
global full_demo
|
| 423 |
full_demo = create_application()
|