Spaces:
Runtime error
Runtime error
Commit
·
0c8cec9
1
Parent(s):
994bf05
added the protein solubility demo
Browse files- app.py +14 -1
- mammal_demo/ps_task.py +127 -0
app.py
CHANGED
|
@@ -4,6 +4,7 @@ from mammal_demo.demo_framework import MammalObjectBroker, MammalTask
|
|
| 4 |
from mammal_demo.dti_task import DtiTask
|
| 5 |
from mammal_demo.ppi_task import PpiTask
|
| 6 |
from mammal_demo.tcr_task import TcrTask
|
|
|
|
| 7 |
|
| 8 |
all_tasks: dict[str, MammalTask] = dict()
|
| 9 |
all_models: dict[str, MammalObjectBroker] = dict()
|
|
@@ -22,6 +23,10 @@ tcr_task = TcrTask(model_dict=all_models)
|
|
| 22 |
all_tasks[tcr_task.name] = tcr_task
|
| 23 |
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
# create the model holders. hold the model and the tokenizer, lazy download
|
| 26 |
# note that the list of relevent tasks needs to be stated.
|
| 27 |
ppi_model = MammalObjectBroker(
|
|
@@ -41,6 +46,13 @@ tcr_model = MammalObjectBroker(
|
|
| 41 |
)
|
| 42 |
all_models[tcr_model.name] = tcr_model
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
def create_application():
|
| 45 |
def task_change(value):
|
| 46 |
visibility = [gr.update(visible=(task == value)) for task in all_tasks.keys()]
|
|
@@ -95,7 +107,8 @@ full_demo = None
|
|
| 95 |
def main():
|
| 96 |
global full_demo
|
| 97 |
full_demo = create_application()
|
| 98 |
-
full_demo.launch(show_error=True, share=
|
|
|
|
| 99 |
|
| 100 |
|
| 101 |
if __name__ == "__main__":
|
|
|
|
| 4 |
from mammal_demo.dti_task import DtiTask
|
| 5 |
from mammal_demo.ppi_task import PpiTask
|
| 6 |
from mammal_demo.tcr_task import TcrTask
|
| 7 |
+
from mammal_demo.ps_task import PsTask
|
| 8 |
|
| 9 |
all_tasks: dict[str, MammalTask] = dict()
|
| 10 |
all_models: dict[str, MammalObjectBroker] = dict()
|
|
|
|
| 23 |
all_tasks[tcr_task.name] = tcr_task
|
| 24 |
|
| 25 |
|
| 26 |
+
ps_task = PsTask(model_dict=all_models)
|
| 27 |
+
all_tasks[ps_task.name] = ps_task
|
| 28 |
+
|
| 29 |
+
|
| 30 |
# create the model holders. hold the model and the tokenizer, lazy download
|
| 31 |
# note that the list of relevent tasks needs to be stated.
|
| 32 |
ppi_model = MammalObjectBroker(
|
|
|
|
| 46 |
)
|
| 47 |
all_models[tcr_model.name] = tcr_model
|
| 48 |
|
| 49 |
+
ps_model = MammalObjectBroker(
|
| 50 |
+
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.protein_solubility",
|
| 51 |
+
task_list=[ps_task.name]
|
| 52 |
+
)
|
| 53 |
+
all_models[ps_model.name] = ps_model
|
| 54 |
+
|
| 55 |
+
|
| 56 |
def create_application():
|
| 57 |
def task_change(value):
|
| 58 |
visibility = [gr.update(visible=(task == value)) for task in all_tasks.keys()]
|
|
|
|
| 107 |
def main():
|
| 108 |
global full_demo
|
| 109 |
full_demo = create_application()
|
| 110 |
+
full_demo.launch(show_error=True, share=False)
|
| 111 |
+
# full_demo.launch(show_error=True, share=True)
|
| 112 |
|
| 113 |
|
| 114 |
if __name__ == "__main__":
|
mammal_demo/ps_task.py
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
|
| 4 |
+
from mammal.examples.protein_solubility.task import ProteinSolubilityTask
|
| 5 |
+
from mammal.keys import (
|
| 6 |
+
ENCODER_INPUTS_STR,
|
| 7 |
+
CLS_PRED,
|
| 8 |
+
SCORES,
|
| 9 |
+
)
|
| 10 |
+
from mammal.model import Mammal
|
| 11 |
+
|
| 12 |
+
from mammal_demo.demo_framework import MammalObjectBroker, MammalTask
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class PsTask(MammalTask):
|
| 16 |
+
def __init__(self, model_dict):
|
| 17 |
+
super().__init__(name="Protein Solubility", model_dict=model_dict)
|
| 18 |
+
self.description = "Protein Solubility (PS)"
|
| 19 |
+
self.examples = {
|
| 20 |
+
"protein_seq": "LLQTGIHVRVSQPSL",
|
| 21 |
+
}
|
| 22 |
+
self.markup_text = """
|
| 23 |
+
# Mammal based TODO: T-cell receptors-peptide binding specificity demonstration
|
| 24 |
+
|
| 25 |
+
Given the TCR beta sequance and the epitope sequacne, estimate the binding specificity.
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def crate_sample_dict(self, sample_inputs: dict, model_holder: MammalObjectBroker):
|
| 31 |
+
"""convert sample_inputs to sample_dict including creating a proper prompt
|
| 32 |
+
|
| 33 |
+
Args:
|
| 34 |
+
sample_inputs (dict): dictionary containing the inputs to the model
|
| 35 |
+
model_holder (MammalObjectBroker): model holder
|
| 36 |
+
Returns:
|
| 37 |
+
dict: sample_dict for feeding into model
|
| 38 |
+
"""
|
| 39 |
+
sample_dict = dict(sample_inputs) # shallow copy
|
| 40 |
+
sample_dict = ProteinSolubilityTask.data_preprocessing(
|
| 41 |
+
sample_dict=sample_dict,
|
| 42 |
+
protein_sequence_key="protein_seq",
|
| 43 |
+
tokenizer_op=model_holder.tokenizer_op,
|
| 44 |
+
device=model_holder.model.device,
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
return sample_dict
|
| 48 |
+
|
| 49 |
+
def run_model(self, sample_dict, model: Mammal):
|
| 50 |
+
# Generate Prediction
|
| 51 |
+
batch_dict = model.generate(
|
| 52 |
+
[sample_dict],
|
| 53 |
+
output_scores=True,
|
| 54 |
+
return_dict_in_generate=True,
|
| 55 |
+
max_new_tokens=5,
|
| 56 |
+
)
|
| 57 |
+
return batch_dict
|
| 58 |
+
|
| 59 |
+
def decode_output(self, batch_dict, tokenizer_op: ModularTokenizerOp)-> dict:
|
| 60 |
+
|
| 61 |
+
"""
|
| 62 |
+
Extract predicted class and scores
|
| 63 |
+
"""
|
| 64 |
+
ans_dict = ProteinSolubilityTask.process_model_output(
|
| 65 |
+
tokenizer_op=tokenizer_op,
|
| 66 |
+
decoder_output=batch_dict[CLS_PRED][0],
|
| 67 |
+
decoder_output_scores=batch_dict[SCORES][0],
|
| 68 |
+
)
|
| 69 |
+
ans = [
|
| 70 |
+
tokenizer_op._tokenizer.decode(batch_dict[CLS_PRED][0]),
|
| 71 |
+
ans_dict["pred"],
|
| 72 |
+
ans_dict["not_normalized_scores"].item(),
|
| 73 |
+
ans_dict["normalized_scores"].item(),
|
| 74 |
+
]
|
| 75 |
+
return ans
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def create_and_run_prompt(self, model_name, protein_seq):
|
| 80 |
+
model_holder = self.model_dict[model_name]
|
| 81 |
+
inputs = {
|
| 82 |
+
"protein_seq": protein_seq,
|
| 83 |
+
}
|
| 84 |
+
sample_dict = self.crate_sample_dict(
|
| 85 |
+
sample_inputs=inputs, model_holder=model_holder
|
| 86 |
+
)
|
| 87 |
+
prompt = sample_dict[ENCODER_INPUTS_STR]
|
| 88 |
+
batch_dict = self.run_model(sample_dict=sample_dict, model=model_holder.model)
|
| 89 |
+
res = prompt, *self.decode_output(batch_dict, tokenizer_op=model_holder.tokenizer_op)
|
| 90 |
+
return res
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def create_demo(self, model_name_widget):
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
with gr.Group() as demo:
|
| 98 |
+
gr.Markdown(self.markup_text)
|
| 99 |
+
with gr.Row():
|
| 100 |
+
protein_textbox = gr.Textbox(
|
| 101 |
+
label="Protein sequance",
|
| 102 |
+
# info="standard",
|
| 103 |
+
interactive=True,
|
| 104 |
+
lines=3,
|
| 105 |
+
value=self.examples["protein_seq"],
|
| 106 |
+
)
|
| 107 |
+
with gr.Row():
|
| 108 |
+
run_mammal = gr.Button(
|
| 109 |
+
"Run Mammal prompt for TCL-Epitope Interaction",
|
| 110 |
+
variant="primary",
|
| 111 |
+
)
|
| 112 |
+
with gr.Row():
|
| 113 |
+
prompt_box = gr.Textbox(label="Mammal prompt", lines=5)
|
| 114 |
+
|
| 115 |
+
with gr.Row():
|
| 116 |
+
decoded = gr.Textbox(label="Mammal output")
|
| 117 |
+
predicted_class = gr.Textbox(label="Mammal prediction")
|
| 118 |
+
with gr.Column():
|
| 119 |
+
non_norm_score = gr.Number(label="Non normelized score")
|
| 120 |
+
norm_score = gr.Number(label="Normelized score")
|
| 121 |
+
run_mammal.click(
|
| 122 |
+
fn=self.create_and_run_prompt,
|
| 123 |
+
inputs=[model_name_widget, protein_textbox],
|
| 124 |
+
outputs=[prompt_box, decoded, predicted_class,non_norm_score,norm_score],
|
| 125 |
+
)
|
| 126 |
+
demo.visible = False
|
| 127 |
+
return demo
|