Spaces:
Runtime error
Runtime error
Commit
·
71382c0
1
Parent(s):
81fb8a8
first attemt on unified test - the actual use case needs to be clearer
Browse files- .pre-commit-config.yaml +49 -0
- README.md +2 -2
- app.py +173 -41
- requirements.txt +1 -0
.pre-commit-config.yaml
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
exclude: .*\.pdb$
|
| 2 |
+
|
| 3 |
+
repos:
|
| 4 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
| 5 |
+
rev: v4.6.0
|
| 6 |
+
hooks:
|
| 7 |
+
- id: check-case-conflict
|
| 8 |
+
- id: end-of-file-fixer
|
| 9 |
+
- id: mixed-line-ending
|
| 10 |
+
- id: trailing-whitespace
|
| 11 |
+
- repo: https://github.com/psf/black
|
| 12 |
+
rev: 24.8.0
|
| 13 |
+
hooks:
|
| 14 |
+
- id: black
|
| 15 |
+
- repo: https://github.com/PyCQA/flake8
|
| 16 |
+
rev: 5.0.4
|
| 17 |
+
hooks:
|
| 18 |
+
- id: flake8
|
| 19 |
+
args:
|
| 20 |
+
- "--ignore=E203,E266,E501,F405,F403,W503"
|
| 21 |
+
- "--statistics"
|
| 22 |
+
|
| 23 |
+
- repo: https://github.com/astral-sh/ruff-pre-commit
|
| 24 |
+
# Ruff version.
|
| 25 |
+
rev: v0.6.5
|
| 26 |
+
hooks:
|
| 27 |
+
- id: ruff
|
| 28 |
+
args:
|
| 29 |
+
- "--fix"
|
| 30 |
+
- "--select"
|
| 31 |
+
- "UP,PT,I,E"#,F,W,C90,I,N,F405,E402" # Specify the rules to select
|
| 32 |
+
- "--line-length"
|
| 33 |
+
- "88"
|
| 34 |
+
- "--exit-non-zero-on-fix"
|
| 35 |
+
- "--ignore"
|
| 36 |
+
- "F405,F403,E501,E402,PT018,PT015,E722,E741"
|
| 37 |
+
types_or: [ python, pyi] #, jupyter ]
|
| 38 |
+
- repo: https://github.com/pre-commit/mirrors-mypy
|
| 39 |
+
rev: v1.13.0
|
| 40 |
+
hooks:
|
| 41 |
+
- id: mypy
|
| 42 |
+
|
| 43 |
+
- repo: https://github.com/srstevenson/nb-clean
|
| 44 |
+
rev: "2.4.0"
|
| 45 |
+
hooks:
|
| 46 |
+
- id: nb-clean
|
| 47 |
+
args:
|
| 48 |
+
- --remove-empty-cells
|
| 49 |
+
- --preserve-cell-outputs
|
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title: Biomed-multi-alignment
|
| 3 |
emoji: 🐁
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: purple
|
|
@@ -8,7 +8,7 @@ sdk_version: 5.4.0
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
-
short_description: Demo for MAMMAL approch Protein-Protein Interaction
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Biomed-multi-alignment (PPI and DTI)
|
| 3 |
emoji: 🐁
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: purple
|
|
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
+
short_description: Demo for MAMMAL approch Protein-Protein Interaction and Drug-Target Binding Affinity
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
|
@@ -1,112 +1,244 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
import torch
|
| 4 |
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
|
| 5 |
-
from mammal.
|
| 6 |
from mammal.keys import *
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
-
|
| 11 |
-
# Load Model
|
| 12 |
-
model = Mammal.from_pretrained(model_path)
|
| 13 |
-
model.eval()
|
| 14 |
|
| 15 |
-
|
| 16 |
-
tokenizer_op =
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
# Default input proteins
|
| 22 |
protein_calmodulin = "MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMISELDQDGFIDKEDLHDGDGKISFEEFLNLVNKEMTADVDGDGQVNYEEFVTMMTSK"
|
| 23 |
protein_calcineurin = "MSSKLLLAGLDIERVLAEKNFYKEWDTWIIEAMNVGDEEVDRIKEFKEDEIFEEAKTLGTAEMQEYKKQKLEEAIEGAFDIFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIRQMWDQNGDWDRIKELKFGEIKKLSAKDTRGTIFIKVFENLGTGVDSEYEDVSKYMLKHQ"
|
| 24 |
|
| 25 |
|
| 26 |
-
def
|
| 27 |
# Formatting prompt to match pre-training syntax
|
| 28 |
return f"<@TOKENIZER-TYPE=AA><BINDING_AFFINITY_CLASS><SENTINEL_ID_0><MOLECULAR_ENTITY><MOLECULAR_ENTITY_GENERAL_PROTEIN><SEQUENCE_NATURAL_START>{prot1}<SEQUENCE_NATURAL_END><MOLECULAR_ENTITY><MOLECULAR_ENTITY_GENERAL_PROTEIN><SEQUENCE_NATURAL_START>{prot2}<SEQUENCE_NATURAL_END><EOS>"
|
| 29 |
|
|
|
|
| 30 |
def run_prompt(prompt):
|
| 31 |
# Create and load sample
|
| 32 |
sample_dict = dict()
|
| 33 |
sample_dict[ENCODER_INPUTS_STR] = prompt
|
| 34 |
|
| 35 |
# Tokenize
|
| 36 |
-
sample_dict=tokenizer_op(
|
| 37 |
sample_dict=sample_dict,
|
| 38 |
key_in=ENCODER_INPUTS_STR,
|
| 39 |
key_out_tokens_ids=ENCODER_INPUTS_TOKENS,
|
| 40 |
key_out_attention_mask=ENCODER_INPUTS_ATTENTION_MASK,
|
| 41 |
)
|
| 42 |
-
sample_dict[ENCODER_INPUTS_TOKENS] = torch.tensor(
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
# Generate Prediction
|
| 47 |
-
batch_dict =
|
| 48 |
[sample_dict],
|
| 49 |
output_scores=True,
|
| 50 |
return_dict_in_generate=True,
|
| 51 |
max_new_tokens=5,
|
| 52 |
-
)
|
| 53 |
-
|
| 54 |
|
| 55 |
# Get output
|
| 56 |
-
generated_output = tokenizer_op._tokenizer.decode(batch_dict[CLS_PRED][0])
|
| 57 |
-
score = batch_dict[
|
| 58 |
-
|
| 59 |
-
return generated_output,score
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
| 64 |
return res
|
| 65 |
|
| 66 |
-
|
|
|
|
| 67 |
markup_text = f"""
|
| 68 |
# Mammal based Protein-Protein Interaction (PPI) demonstration
|
| 69 |
|
| 70 |
Given two protein sequences, estimate if the proteins interact or not.
|
| 71 |
|
| 72 |
-
### Using the model from
|
| 73 |
|
| 74 |
-
```{
|
| 75 |
"""
|
| 76 |
-
|
| 77 |
-
with gr.Blocks() as demo:
|
| 78 |
gr.Markdown(markup_text)
|
| 79 |
with gr.Row():
|
| 80 |
prot1 = gr.Textbox(
|
| 81 |
label="Protein 1 sequence",
|
| 82 |
# info="standard",
|
| 83 |
interactive=True,
|
| 84 |
-
lines=
|
| 85 |
value=protein_calmodulin,
|
| 86 |
)
|
| 87 |
prot2 = gr.Textbox(
|
| 88 |
label="Protein 2 sequence",
|
| 89 |
# info="standard",
|
| 90 |
interactive=True,
|
| 91 |
-
lines=
|
| 92 |
value=protein_calcineurin,
|
| 93 |
)
|
| 94 |
with gr.Row():
|
| 95 |
-
run_mammal = gr.Button(
|
|
|
|
|
|
|
| 96 |
with gr.Row():
|
| 97 |
-
prompt_box = gr.Textbox(label="Mammal prompt",lines=5)
|
| 98 |
-
|
| 99 |
with gr.Row():
|
| 100 |
decoded = gr.Textbox(label="Mammal output")
|
| 101 |
run_mammal.click(
|
| 102 |
fn=create_and_run_prompt,
|
| 103 |
-
inputs=[prot1,prot2],
|
| 104 |
-
outputs=[prompt_box,decoded,gr.Number(label=
|
| 105 |
)
|
| 106 |
with gr.Row():
|
| 107 |
-
gr.Markdown(
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
def main():
|
| 112 |
demo = create_application()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import torch
|
| 3 |
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
|
| 4 |
+
from mammal.examples.dti_bindingdb_kd.task import DtiBindingdbKdTask
|
| 5 |
from mammal.keys import *
|
| 6 |
+
from mammal.model import Mammal
|
| 7 |
+
|
| 8 |
+
model_paths = dict()
|
| 9 |
+
|
| 10 |
+
# Protein protein interaction:
|
| 11 |
+
ppi = "Protein-Protein Interaction (PPI)"
|
| 12 |
+
model_paths[ppi] = "ibm/biomed.omics.bl.sm.ma-ted-458m"
|
| 13 |
|
| 14 |
+
#
|
| 15 |
+
dti = "Drug-Target Binding Affinity"
|
| 16 |
+
model_paths[dti] = "ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd"
|
| 17 |
|
| 18 |
|
| 19 |
+
# load models (should probably be lazy)
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
models = dict()
|
| 22 |
+
tokenizer_op = dict()
|
| 23 |
|
| 24 |
+
|
| 25 |
+
for task, model_path in model_paths.items():
|
| 26 |
+
if task not in models:
|
| 27 |
+
models[task] = Mammal.from_pretrained(model_path)
|
| 28 |
+
models[task].eval()
|
| 29 |
+
# Load Tokenizer
|
| 30 |
+
tokenizer_op[task] = ModularTokenizerOp.from_pretrained(model_path)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
### PPI:
|
| 34 |
+
# token for positive binding
|
| 35 |
+
positive_token_id = tokenizer_op[ppi].get_token_id("<1>")
|
| 36 |
|
| 37 |
# Default input proteins
|
| 38 |
protein_calmodulin = "MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMISELDQDGFIDKEDLHDGDGKISFEEFLNLVNKEMTADVDGDGQVNYEEFVTMMTSK"
|
| 39 |
protein_calcineurin = "MSSKLLLAGLDIERVLAEKNFYKEWDTWIIEAMNVGDEEVDRIKEFKEDEIFEEAKTLGTAEMQEYKKQKLEEAIEGAFDIFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIRQMWDQNGDWDRIKELKFGEIKKLSAKDTRGTIFIKVFENLGTGVDSEYEDVSKYMLKHQ"
|
| 40 |
|
| 41 |
|
| 42 |
+
def format_prompt_ppi(prot1, prot2):
|
| 43 |
# Formatting prompt to match pre-training syntax
|
| 44 |
return f"<@TOKENIZER-TYPE=AA><BINDING_AFFINITY_CLASS><SENTINEL_ID_0><MOLECULAR_ENTITY><MOLECULAR_ENTITY_GENERAL_PROTEIN><SEQUENCE_NATURAL_START>{prot1}<SEQUENCE_NATURAL_END><MOLECULAR_ENTITY><MOLECULAR_ENTITY_GENERAL_PROTEIN><SEQUENCE_NATURAL_START>{prot2}<SEQUENCE_NATURAL_END><EOS>"
|
| 45 |
|
| 46 |
+
|
| 47 |
def run_prompt(prompt):
|
| 48 |
# Create and load sample
|
| 49 |
sample_dict = dict()
|
| 50 |
sample_dict[ENCODER_INPUTS_STR] = prompt
|
| 51 |
|
| 52 |
# Tokenize
|
| 53 |
+
sample_dict = tokenizer_op[ppi](
|
| 54 |
sample_dict=sample_dict,
|
| 55 |
key_in=ENCODER_INPUTS_STR,
|
| 56 |
key_out_tokens_ids=ENCODER_INPUTS_TOKENS,
|
| 57 |
key_out_attention_mask=ENCODER_INPUTS_ATTENTION_MASK,
|
| 58 |
)
|
| 59 |
+
sample_dict[ENCODER_INPUTS_TOKENS] = torch.tensor(
|
| 60 |
+
sample_dict[ENCODER_INPUTS_TOKENS]
|
| 61 |
+
)
|
| 62 |
+
sample_dict[ENCODER_INPUTS_ATTENTION_MASK] = torch.tensor(
|
| 63 |
+
sample_dict[ENCODER_INPUTS_ATTENTION_MASK]
|
| 64 |
+
)
|
| 65 |
|
| 66 |
# Generate Prediction
|
| 67 |
+
batch_dict = models[ppi].generate(
|
| 68 |
[sample_dict],
|
| 69 |
output_scores=True,
|
| 70 |
return_dict_in_generate=True,
|
| 71 |
max_new_tokens=5,
|
| 72 |
+
)
|
|
|
|
| 73 |
|
| 74 |
# Get output
|
| 75 |
+
generated_output = tokenizer_op[ppi]._tokenizer.decode(batch_dict[CLS_PRED][0])
|
| 76 |
+
score = batch_dict["model.out.scores"][0][1][positive_token_id].item()
|
| 77 |
+
|
| 78 |
+
return generated_output, score
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def create_and_run_prompt(protein1, protein2):
|
| 82 |
+
prompt = format_prompt_ppi(protein1, protein2)
|
| 83 |
+
res = prompt, *run_prompt(prompt=prompt)
|
| 84 |
return res
|
| 85 |
|
| 86 |
+
|
| 87 |
+
def create_ppi_demo():
|
| 88 |
markup_text = f"""
|
| 89 |
# Mammal based Protein-Protein Interaction (PPI) demonstration
|
| 90 |
|
| 91 |
Given two protein sequences, estimate if the proteins interact or not.
|
| 92 |
|
| 93 |
+
### Using the model from
|
| 94 |
|
| 95 |
+
```{model_paths[ppi]} ```
|
| 96 |
"""
|
| 97 |
+
with gr.Group() as ppi_demo:
|
|
|
|
| 98 |
gr.Markdown(markup_text)
|
| 99 |
with gr.Row():
|
| 100 |
prot1 = gr.Textbox(
|
| 101 |
label="Protein 1 sequence",
|
| 102 |
# info="standard",
|
| 103 |
interactive=True,
|
| 104 |
+
lines=3,
|
| 105 |
value=protein_calmodulin,
|
| 106 |
)
|
| 107 |
prot2 = gr.Textbox(
|
| 108 |
label="Protein 2 sequence",
|
| 109 |
# info="standard",
|
| 110 |
interactive=True,
|
| 111 |
+
lines=3,
|
| 112 |
value=protein_calcineurin,
|
| 113 |
)
|
| 114 |
with gr.Row():
|
| 115 |
+
run_mammal = gr.Button(
|
| 116 |
+
"Run Mammal prompt for Protein-Protein Interaction", variant="primary"
|
| 117 |
+
)
|
| 118 |
with gr.Row():
|
| 119 |
+
prompt_box = gr.Textbox(label="Mammal prompt", lines=5)
|
| 120 |
+
|
| 121 |
with gr.Row():
|
| 122 |
decoded = gr.Textbox(label="Mammal output")
|
| 123 |
run_mammal.click(
|
| 124 |
fn=create_and_run_prompt,
|
| 125 |
+
inputs=[prot1, prot2],
|
| 126 |
+
outputs=[prompt_box, decoded, gr.Number(label="PPI score")],
|
| 127 |
)
|
| 128 |
with gr.Row():
|
| 129 |
+
gr.Markdown(
|
| 130 |
+
"```<SENTINEL_ID_0>``` contains the binding affinity class, which is ```<1>``` for interacting and ```<0>``` for non-interacting"
|
| 131 |
+
)
|
| 132 |
+
ppi_demo.visible = False
|
| 133 |
+
return ppi_demo
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
### DTI:
|
| 137 |
+
# input
|
| 138 |
+
target_seq = "NLMKRCTRGFRKLGKCTTLEEEKCKTLYPRGQCTCSDSKMNTHSCDCKSC"
|
| 139 |
+
drug_seq = "CC(=O)NCCC1=CNc2c1cc(OC)cc2"
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
# token for positive binding
|
| 143 |
+
positive_token_id = tokenizer_op[dti].get_token_id("<1>")
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def format_prompt_dti(prot, drug):
|
| 147 |
+
sample_dict = {"target_seq": target_seq, "drug_seq": drug_seq}
|
| 148 |
+
sample_dict = DtiBindingdbKdTask.data_preprocessing(
|
| 149 |
+
sample_dict=sample_dict,
|
| 150 |
+
tokenizer_op=tokenizer_op[dti],
|
| 151 |
+
target_sequence_key="target_seq",
|
| 152 |
+
drug_sequence_key="drug_seq",
|
| 153 |
+
norm_y_mean=None,
|
| 154 |
+
norm_y_std=None,
|
| 155 |
+
device=models[dti].device,
|
| 156 |
+
)
|
| 157 |
+
return sample_dict
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def create_and_run_prompt_dtb(prot, drug):
|
| 161 |
+
sample_dict = format_prompt_dti(prot, drug)
|
| 162 |
+
# Post-process the model's output
|
| 163 |
+
# batch_dict = model_dti.forward_encoder_only([sample_dict])
|
| 164 |
+
batch_dict = models[dti].forward_encoder_only([sample_dict])
|
| 165 |
+
batch_dict = DtiBindingdbKdTask.process_model_output(
|
| 166 |
+
batch_dict,
|
| 167 |
+
scalars_preds_processed_key="model.out.dti_bindingdb_kd",
|
| 168 |
+
norm_y_mean=5.79384684128215,
|
| 169 |
+
norm_y_std=1.33808027428196,
|
| 170 |
+
)
|
| 171 |
+
ans = [
|
| 172 |
+
"model.out.dti_bindingdb_kd",
|
| 173 |
+
float(batch_dict["model.out.dti_bindingdb_kd"][0]),
|
| 174 |
+
]
|
| 175 |
+
res = sample_dict["data.query.encoder_input"], *ans
|
| 176 |
+
return res
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
def create_tdb_demo():
|
| 180 |
+
markup_text = f"""
|
| 181 |
+
# Mammal based Target-Drug binding affinity demonstration
|
| 182 |
+
|
| 183 |
+
Given a protein sequence and a drug (in SMILES), estimate the binding affinity.
|
| 184 |
+
|
| 185 |
+
### Using the model from
|
| 186 |
+
|
| 187 |
+
```{model_paths[dti]} ```
|
| 188 |
+
"""
|
| 189 |
+
with gr.Group() as tdb_demo:
|
| 190 |
+
gr.Markdown(markup_text)
|
| 191 |
+
with gr.Row():
|
| 192 |
+
prot = gr.Textbox(
|
| 193 |
+
label="Protein sequence",
|
| 194 |
+
# info="standard",
|
| 195 |
+
interactive=True,
|
| 196 |
+
lines=3,
|
| 197 |
+
value=target_seq,
|
| 198 |
+
)
|
| 199 |
+
drug = gr.Textbox(
|
| 200 |
+
label="drug sequence (SMILES)",
|
| 201 |
+
# info="standard",
|
| 202 |
+
interactive=True,
|
| 203 |
+
lines=3,
|
| 204 |
+
value=drug_seq,
|
| 205 |
+
)
|
| 206 |
+
with gr.Row():
|
| 207 |
+
run_mammal = gr.Button(
|
| 208 |
+
"Run Mammal prompt for Target Drug Affinity", variant="primary"
|
| 209 |
+
)
|
| 210 |
+
with gr.Row():
|
| 211 |
+
prompt_box = gr.Textbox(label="Mammal prompt", lines=5)
|
| 212 |
+
|
| 213 |
+
with gr.Row():
|
| 214 |
+
decoded = gr.Textbox(label="Mammal output")
|
| 215 |
+
run_mammal.click(
|
| 216 |
+
fn=create_and_run_prompt_dtb,
|
| 217 |
+
inputs=[prot, drug],
|
| 218 |
+
outputs=[prompt_box, decoded, gr.Number(label="DTI score")],
|
| 219 |
+
)
|
| 220 |
+
tdb_demo.visible = False
|
| 221 |
+
return tdb_demo
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
def create_application():
|
| 225 |
+
|
| 226 |
+
with gr.Blocks() as demo:
|
| 227 |
+
main_dropdown = gr.Dropdown(choices=["select demo", ppi, dti])
|
| 228 |
+
main_dropdown.interactive = True
|
| 229 |
+
ppi_demo = create_ppi_demo()
|
| 230 |
+
dtb_demo = create_tdb_demo()
|
| 231 |
+
|
| 232 |
+
def set_ppi_vis(main_text):
|
| 233 |
+
return gr.Group(visible=main_text == ppi), gr.Group(
|
| 234 |
+
visible=main_text == dti
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
main_dropdown.change(
|
| 238 |
+
set_ppi_vis, inputs=main_dropdown, outputs=[ppi_demo, dtb_demo]
|
| 239 |
+
)
|
| 240 |
+
return demo
|
| 241 |
+
|
| 242 |
|
| 243 |
def main():
|
| 244 |
demo = create_application()
|
requirements.txt
CHANGED
|
@@ -1,2 +1,3 @@
|
|
| 1 |
# for the mammal demo app
|
| 2 |
mammal @ git+https://github.com/BiomedSciAI/biomed-multi-alignment.git
|
|
|
|
|
|
| 1 |
# for the mammal demo app
|
| 2 |
mammal @ git+https://github.com/BiomedSciAI/biomed-multi-alignment.git
|
| 3 |
+
pytdc
|