Spaces:
Runtime error
Runtime error
Commit
·
93d0d1a
1
Parent(s):
72dbfd7
refactor
Browse files- __init__.py +0 -0
- demo_framework.py +107 -0
- new_app.py +1 -98
__init__.py
ADDED
|
File without changes
|
demo_framework.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
|
| 3 |
+
from mammal.examples.dti_bindingdb_kd.task import DtiBindingdbKdTask
|
| 4 |
+
from mammal.keys import *
|
| 5 |
+
from mammal.model import Mammal
|
| 6 |
+
from abc import ABC, abstractmethod
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class MammalObjectBroker():
|
| 13 |
+
def __init__(self, model_path: str, name:str= None, task_list: list[str]=None) -> None:
|
| 14 |
+
self.model_path = model_path
|
| 15 |
+
if name is None:
|
| 16 |
+
name = model_path
|
| 17 |
+
self.name = name
|
| 18 |
+
|
| 19 |
+
if task_list is not None:
|
| 20 |
+
self.tasks=task_list
|
| 21 |
+
else:
|
| 22 |
+
self.task = []
|
| 23 |
+
self._model = None
|
| 24 |
+
self._tokenizer_op = None
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
@property
|
| 28 |
+
def model(self)-> Mammal:
|
| 29 |
+
if self._model is None:
|
| 30 |
+
self._model = Mammal.from_pretrained(self.model_path)
|
| 31 |
+
self._model.eval()
|
| 32 |
+
return self._model
|
| 33 |
+
|
| 34 |
+
@property
|
| 35 |
+
def tokenizer_op(self):
|
| 36 |
+
if self._tokenizer_op is None:
|
| 37 |
+
self._tokenizer_op = ModularTokenizerOp.from_pretrained(self.model_path)
|
| 38 |
+
return self._tokenizer_op
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class MammalTask(ABC):
|
| 44 |
+
def __init__(self, name:str) -> None:
|
| 45 |
+
self.name = name
|
| 46 |
+
self.description = None
|
| 47 |
+
self._demo = None
|
| 48 |
+
|
| 49 |
+
# @abstractmethod
|
| 50 |
+
# def _generate_prompt(self, **kwargs) -> str:
|
| 51 |
+
# """Formatting prompt to match pre-training syntax
|
| 52 |
+
|
| 53 |
+
# Args:
|
| 54 |
+
# prot1 (_type_): _description_
|
| 55 |
+
# prot2 (_type_): _description_
|
| 56 |
+
|
| 57 |
+
# Raises:
|
| 58 |
+
# No: _description_
|
| 59 |
+
# """
|
| 60 |
+
# raise NotImplementedError()
|
| 61 |
+
|
| 62 |
+
@abstractmethod
|
| 63 |
+
def crate_sample_dict(self,sample_inputs: dict, model_holder:MammalObjectBroker) -> dict:
|
| 64 |
+
"""Formatting prompt to match pre-training syntax
|
| 65 |
+
|
| 66 |
+
Args:
|
| 67 |
+
prompt (str): _description_
|
| 68 |
+
|
| 69 |
+
Returns:
|
| 70 |
+
dict: sample_dict for feeding into model
|
| 71 |
+
"""
|
| 72 |
+
raise NotImplementedError()
|
| 73 |
+
|
| 74 |
+
# @abstractmethod
|
| 75 |
+
def run_model(self, sample_dict, model:Mammal):
|
| 76 |
+
raise NotImplementedError()
|
| 77 |
+
|
| 78 |
+
def create_demo(self, model_name_widget: gr.component) -> gr.Group:
|
| 79 |
+
"""create an gradio demo group
|
| 80 |
+
|
| 81 |
+
Args:
|
| 82 |
+
model_name_widgit (gr.Component): widget holding the model name to use. This is needed to create
|
| 83 |
+
gradio actions with the current model name as an input
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
Raises:
|
| 87 |
+
NotImplementedError: _description_
|
| 88 |
+
"""
|
| 89 |
+
raise NotImplementedError()
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def demo(self,model_name_widgit:gr.component=None):
|
| 94 |
+
if self._demo is None:
|
| 95 |
+
model_name_widget:gr.component
|
| 96 |
+
self._demo = self.create_demo(model_name_widget=model_name_widgit)
|
| 97 |
+
return self._demo
|
| 98 |
+
|
| 99 |
+
@abstractmethod
|
| 100 |
+
def decode_output(self,batch_dict, model:Mammal):
|
| 101 |
+
raise NotImplementedError()
|
| 102 |
+
|
| 103 |
+
#self._setup()
|
| 104 |
+
|
| 105 |
+
# def _setup(self):
|
| 106 |
+
# pass
|
| 107 |
+
|
new_app.py
CHANGED
|
@@ -4,105 +4,8 @@ from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
|
|
| 4 |
from mammal.examples.dti_bindingdb_kd.task import DtiBindingdbKdTask
|
| 5 |
from mammal.keys import *
|
| 6 |
from mammal.model import Mammal
|
| 7 |
-
from abc import ABC, abstractmethod
|
| 8 |
-
class MammalObjectBroker():
|
| 9 |
-
def __init__(self, model_path: str, name:str= None, task_list: list[str]=None) -> None:
|
| 10 |
-
self.model_path = model_path
|
| 11 |
-
if name is None:
|
| 12 |
-
name = model_path
|
| 13 |
-
self.name = name
|
| 14 |
-
|
| 15 |
-
if task_list is not None:
|
| 16 |
-
self.tasks=task_list
|
| 17 |
-
else:
|
| 18 |
-
self.task = []
|
| 19 |
-
self._model = None
|
| 20 |
-
self._tokenizer_op = None
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
@property
|
| 24 |
-
def model(self)-> Mammal:
|
| 25 |
-
if self._model is None:
|
| 26 |
-
self._model = Mammal.from_pretrained(self.model_path)
|
| 27 |
-
self._model.eval()
|
| 28 |
-
return self._model
|
| 29 |
-
|
| 30 |
-
@property
|
| 31 |
-
def tokenizer_op(self):
|
| 32 |
-
if self._tokenizer_op is None:
|
| 33 |
-
self._tokenizer_op = ModularTokenizerOp.from_pretrained(self.model_path)
|
| 34 |
-
return self._tokenizer_op
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
class MammalTask(ABC):
|
| 41 |
-
def __init__(self, name:str) -> None:
|
| 42 |
-
self.name = name
|
| 43 |
-
self.description = None
|
| 44 |
-
self._demo = None
|
| 45 |
-
|
| 46 |
-
# @abstractmethod
|
| 47 |
-
# def _generate_prompt(self, **kwargs) -> str:
|
| 48 |
-
# """Formatting prompt to match pre-training syntax
|
| 49 |
-
|
| 50 |
-
# Args:
|
| 51 |
-
# prot1 (_type_): _description_
|
| 52 |
-
# prot2 (_type_): _description_
|
| 53 |
-
|
| 54 |
-
# Raises:
|
| 55 |
-
# No: _description_
|
| 56 |
-
# """
|
| 57 |
-
# raise NotImplementedError()
|
| 58 |
-
|
| 59 |
-
@abstractmethod
|
| 60 |
-
def crate_sample_dict(self,sample_inputs: dict, model_holder:MammalObjectBroker) -> dict:
|
| 61 |
-
"""Formatting prompt to match pre-training syntax
|
| 62 |
-
|
| 63 |
-
Args:
|
| 64 |
-
prompt (str): _description_
|
| 65 |
-
|
| 66 |
-
Returns:
|
| 67 |
-
dict: sample_dict for feeding into model
|
| 68 |
-
"""
|
| 69 |
-
raise NotImplementedError()
|
| 70 |
-
|
| 71 |
-
# @abstractmethod
|
| 72 |
-
def run_model(self, sample_dict, model:Mammal):
|
| 73 |
-
raise NotImplementedError()
|
| 74 |
-
|
| 75 |
-
def create_demo(self, model_name_widget: gr.component) -> gr.Group:
|
| 76 |
-
"""create an gradio demo group
|
| 77 |
-
|
| 78 |
-
Args:
|
| 79 |
-
model_name_widgit (gr.Component): widget holding the model name to use. This is needed to create
|
| 80 |
-
gradio actions with the current model name as an input
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
Raises:
|
| 84 |
-
NotImplementedError: _description_
|
| 85 |
-
"""
|
| 86 |
-
raise NotImplementedError()
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
def demo(self,model_name_widgit:gr.component=None):
|
| 91 |
-
if self._demo is None:
|
| 92 |
-
model_name_widget:gr.component
|
| 93 |
-
self._demo = self.create_demo(model_name_widget=model_name_widgit)
|
| 94 |
-
return self._demo
|
| 95 |
-
|
| 96 |
-
@abstractmethod
|
| 97 |
-
def decode_output(self,batch_dict, model:Mammal):
|
| 98 |
-
raise NotImplementedError()
|
| 99 |
-
|
| 100 |
-
#self._setup()
|
| 101 |
-
|
| 102 |
-
# def _setup(self):
|
| 103 |
-
# pass
|
| 104 |
-
|
| 105 |
|
|
|
|
| 106 |
|
| 107 |
all_tasks = dict()
|
| 108 |
all_models= dict()
|
|
|
|
| 4 |
from mammal.examples.dti_bindingdb_kd.task import DtiBindingdbKdTask
|
| 5 |
from mammal.keys import *
|
| 6 |
from mammal.model import Mammal
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
from demo_framework import MammalObjectBroker, MammalTask
|
| 9 |
|
| 10 |
all_tasks = dict()
|
| 11 |
all_models= dict()
|