Spaces:
Runtime error
Runtime error
Commit
·
fbc2291
1
Parent(s):
06f1eeb
moved creation and collection of tasks and models into memmal_demo
Browse files- app.py +2 -54
- mammal_demo/__init__.py +58 -0
app.py
CHANGED
|
@@ -1,14 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
-
|
| 4 |
-
ModelRegistry,
|
| 5 |
-
TaskRegistry,
|
| 6 |
-
)
|
| 7 |
-
from mammal_demo.dti_task import DtiTask
|
| 8 |
-
from mammal_demo.ppi_task import PpiTask
|
| 9 |
-
from mammal_demo.ps_task import PsTask
|
| 10 |
-
from mammal_demo.tcr_task import TcrTask
|
| 11 |
-
|
| 12 |
MAIN_MARKDOWN_TEXT = """
|
| 13 |
|
| 14 |
The **[ibm/biomed.omics.bl.sm.ma-ted-458m](https://huggingface.co/models?sort=trending&search=ibm%2Fbiomed.omics.bl)** model family is a biomedical foundation model and its finetuned variants trained on over 2 billion biological samples across multiple modalities, including proteins, small molecules, and single-cell gene data.
|
|
@@ -20,51 +12,7 @@ The syntax allows for dynamic combinations of tokens and scalars, enabling class
|
|
| 20 |
This page demonstraits a variety of drug discovery and biomedical tasks for the model family. Select the task to access the specific demos.
|
| 21 |
"""
|
| 22 |
|
| 23 |
-
|
| 24 |
-
all_tasks = TaskRegistry()
|
| 25 |
-
all_models = ModelRegistry()
|
| 26 |
-
|
| 27 |
-
# first create the required tasks
|
| 28 |
-
# Note that the tasks need access to the models, as the model to use depends on the state of the widget
|
| 29 |
-
# we pass the all_models dict and update it when we actualy have the models.
|
| 30 |
-
|
| 31 |
-
ppi_task = all_tasks.register_task(PpiTask(model_dict=all_models))
|
| 32 |
-
tdi_task = all_tasks.register_task(DtiTask(model_dict=all_models))
|
| 33 |
-
ps_task = all_tasks.register_task(PsTask(model_dict=all_models))
|
| 34 |
-
tcr_task = all_tasks.register_task(TcrTask(model_dict=all_models))
|
| 35 |
-
|
| 36 |
-
# create the model holders. hold the model and the tokenizer, lazy download
|
| 37 |
-
# note that the list of relevent tasks needs to be stated.
|
| 38 |
-
all_models.register_model(
|
| 39 |
-
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd",
|
| 40 |
-
task_list=[tdi_task],
|
| 41 |
-
)
|
| 42 |
-
all_models.register_model(
|
| 43 |
-
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd_peer",
|
| 44 |
-
task_list=[tdi_task],
|
| 45 |
-
)
|
| 46 |
-
|
| 47 |
-
all_models.register_model(
|
| 48 |
-
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.tcr_epitope_bind",
|
| 49 |
-
task_list=[tcr_task],
|
| 50 |
-
)
|
| 51 |
-
all_models.register_model(
|
| 52 |
-
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.protein_solubility",
|
| 53 |
-
task_list=[ps_task],
|
| 54 |
-
)
|
| 55 |
-
all_models.register_model(
|
| 56 |
-
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m",
|
| 57 |
-
task_list=[ppi_task],
|
| 58 |
-
)
|
| 59 |
-
all_models.register_model(
|
| 60 |
-
"ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_clintox_tox"
|
| 61 |
-
)
|
| 62 |
-
all_models.register_model(
|
| 63 |
-
"ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_clintox_fda"
|
| 64 |
-
)
|
| 65 |
-
all_models.register_model(
|
| 66 |
-
"ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_bbbp"
|
| 67 |
-
)
|
| 68 |
|
| 69 |
|
| 70 |
def create_application():
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
+
import mammal_demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
MAIN_MARKDOWN_TEXT = """
|
| 5 |
|
| 6 |
The **[ibm/biomed.omics.bl.sm.ma-ted-458m](https://huggingface.co/models?sort=trending&search=ibm%2Fbiomed.omics.bl)** model family is a biomedical foundation model and its finetuned variants trained on over 2 billion biological samples across multiple modalities, including proteins, small molecules, and single-cell gene data.
|
|
|
|
| 12 |
This page demonstraits a variety of drug discovery and biomedical tasks for the model family. Select the task to access the specific demos.
|
| 13 |
"""
|
| 14 |
|
| 15 |
+
all_tasks, all_models = mammal_demo.tasks_and_models()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
|
| 18 |
def create_application():
|
mammal_demo/__init__.py
CHANGED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from mammal_demo.demo_framework import (
|
| 3 |
+
ModelRegistry,
|
| 4 |
+
TaskRegistry,
|
| 5 |
+
)
|
| 6 |
+
from mammal_demo.dti_task import DtiTask
|
| 7 |
+
from mammal_demo.ppi_task import PpiTask
|
| 8 |
+
from mammal_demo.ps_task import PsTask
|
| 9 |
+
from mammal_demo.tcr_task import TcrTask
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def tasks_and_models():
|
| 13 |
+
all_tasks = TaskRegistry()
|
| 14 |
+
all_models = ModelRegistry()
|
| 15 |
+
|
| 16 |
+
# first create the required tasks
|
| 17 |
+
# Note that the tasks need access to the models, as the model to use depends on the state of the widget
|
| 18 |
+
# we pass the all_models dict and update it when we actualy have the models.
|
| 19 |
+
|
| 20 |
+
ppi_task = all_tasks.register_task(PpiTask(model_dict=all_models))
|
| 21 |
+
tdi_task = all_tasks.register_task(DtiTask(model_dict=all_models))
|
| 22 |
+
ps_task = all_tasks.register_task(PsTask(model_dict=all_models))
|
| 23 |
+
tcr_task = all_tasks.register_task(TcrTask(model_dict=all_models))
|
| 24 |
+
|
| 25 |
+
# create the model holders. hold the model and the tokenizer, lazy download
|
| 26 |
+
# note that the list of relevent tasks needs to be stated.
|
| 27 |
+
all_models.register_model(
|
| 28 |
+
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd",
|
| 29 |
+
task_list=[tdi_task],
|
| 30 |
+
)
|
| 31 |
+
all_models.register_model(
|
| 32 |
+
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd_peer",
|
| 33 |
+
task_list=[tdi_task],
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
all_models.register_model(
|
| 37 |
+
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.tcr_epitope_bind",
|
| 38 |
+
task_list=[tcr_task],
|
| 39 |
+
)
|
| 40 |
+
all_models.register_model(
|
| 41 |
+
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.protein_solubility",
|
| 42 |
+
task_list=[ps_task],
|
| 43 |
+
)
|
| 44 |
+
all_models.register_model(
|
| 45 |
+
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m",
|
| 46 |
+
task_list=[ppi_task],
|
| 47 |
+
)
|
| 48 |
+
all_models.register_model(
|
| 49 |
+
"ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_clintox_tox"
|
| 50 |
+
)
|
| 51 |
+
all_models.register_model(
|
| 52 |
+
"ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_clintox_fda"
|
| 53 |
+
)
|
| 54 |
+
all_models.register_model(
|
| 55 |
+
"ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_bbbp"
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
return all_tasks,all_models
|