Upload 2 files
Browse files- app.py +43 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
from tensorflow.keras.preprocessing import image
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from keras import layers
|
| 7 |
+
|
| 8 |
+
# Load your trained Xception model
|
| 9 |
+
model = tf.keras.models.load_model("xception-head")
|
| 10 |
+
|
| 11 |
+
# Define the labels for your classification
|
| 12 |
+
class_labels = ['fresh', 'early decay', 'advanced decay','skeletonized'] # Replace with your actual class names
|
| 13 |
+
|
| 14 |
+
def classify_image(img):
|
| 15 |
+
# Preprocess the image to fit the model input shape
|
| 16 |
+
img = img.resize((299, 299)) # Xception takes 299x299 input size
|
| 17 |
+
img = np.array(img) / 255.0 # Normalize the image
|
| 18 |
+
img = np.expand_dims(img, axis=0)
|
| 19 |
+
|
| 20 |
+
# Make prediction
|
| 21 |
+
predictions = model.predict(img)
|
| 22 |
+
predicted_class = np.argmax(predictions, axis=1)[0]
|
| 23 |
+
confidence = np.max(predictions)
|
| 24 |
+
return {class_labels[i]: float(predictions[0][i]) for i in range(len(class_labels))}, confidence
|
| 25 |
+
|
| 26 |
+
# Example images (local paths or URLs)
|
| 27 |
+
#example_images = [
|
| 28 |
+
#'examples/fresh.jpg', # Replace with actual local file paths or URLs
|
| 29 |
+
#]
|
| 30 |
+
|
| 31 |
+
# Gradio interface
|
| 32 |
+
demo = gr.Interface(
|
| 33 |
+
fn=classify_image,
|
| 34 |
+
title="Human Decomposition Image Classification",
|
| 35 |
+
description = "Predict the stage of decay (fresh, early decay, advanced decay, or skeletonized) of a head. This is a demo of one of our human decomposition image classification <a href=\"https://huggingface.co/icputrd/megyesi_decomposition_classification/blob/main/head/xception\">models</a>.",
|
| 36 |
+
inputs=gr.Image(type="pil"),
|
| 37 |
+
outputs=[gr.Label(num_top_classes=len(class_labels)), gr.Number()],
|
| 38 |
+
live=True,
|
| 39 |
+
article = "Author: <a href=\"https://www.linkedin.com/in/anna-maria-nau/\">Anna-Maria Nau</a>"
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
if __name__ == "__main__":
|
| 43 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
pillow
|
| 3 |
+
transformers
|
| 4 |
+
tensorflow==2.11.0
|
| 5 |
+
keras==2.11.0
|
| 6 |
+
numpy==1.24.4
|