Update app.py
Browse files
app.py
CHANGED
|
@@ -1,28 +1,34 @@
|
|
| 1 |
-
import os
|
| 2 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Disable GPU usage
|
| 3 |
import gradio as gr
|
| 4 |
import tensorflow as tf
|
| 5 |
from tensorflow.keras.preprocessing import image
|
| 6 |
import numpy as np
|
| 7 |
-
from
|
| 8 |
|
| 9 |
-
# Load
|
| 10 |
-
model =
|
| 11 |
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def classify_image(img):
|
| 14 |
-
# Preprocess the image
|
| 15 |
-
img = img.resize((299, 299)) #
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
img_array /= 255.0 # Normalize the image
|
| 19 |
|
| 20 |
# Make prediction
|
| 21 |
-
predictions = model.predict(
|
| 22 |
-
predicted_class = np.argmax(predictions, axis
|
| 23 |
-
|
| 24 |
-
return
|
| 25 |
|
| 26 |
-
# Gradio interface
|
| 27 |
-
demo = gr.Interface(
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import tensorflow as tf
|
| 3 |
from tensorflow.keras.preprocessing import image
|
| 4 |
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
|
| 7 |
+
# Load your trained Xception model
|
| 8 |
+
model = tf.keras.models.load_model("your_xception_model.h5")
|
| 9 |
|
| 10 |
+
# Define the labels for your classification (example: if you have 3 classes)
|
| 11 |
+
class_labels = ['class1', 'class2', 'class3'] # Replace with your actual class names
|
| 12 |
|
| 13 |
def classify_image(img):
|
| 14 |
+
# Preprocess the image to fit the model input shape
|
| 15 |
+
img = img.resize((299, 299)) # Xception takes 299x299 input size
|
| 16 |
+
img = np.array(img) / 255.0 # Normalize the image
|
| 17 |
+
img = np.expand_dims(img, axis=0)
|
|
|
|
| 18 |
|
| 19 |
# Make prediction
|
| 20 |
+
predictions = model.predict(img)
|
| 21 |
+
predicted_class = np.argmax(predictions, axis=1)[0]
|
| 22 |
+
confidence = np.max(predictions)
|
| 23 |
+
return {class_labels[i]: float(predictions[0][i]) for i in range(len(class_labels))}, confidence
|
| 24 |
|
| 25 |
+
# Gradio interface
|
| 26 |
+
demo = gr.Interface(
|
| 27 |
+
fn=classify_image,
|
| 28 |
+
inputs=gr.inputs.Image(type="pil"),
|
| 29 |
+
outputs=[gr.outputs.Label(num_top_classes=len(class_labels)), "number"],
|
| 30 |
+
live=True
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
if __name__ == "__main__":
|
| 34 |
+
demo.launch()
|