Update human_text_detect.py
Browse files- human_text_detect.py +5 -22
human_text_detect.py
CHANGED
|
@@ -6,7 +6,7 @@ import numpy as np
|
|
| 6 |
import pickle
|
| 7 |
from src.DetectLM import DetectLM
|
| 8 |
from src.PerplexityEvaluator import PerplexityEvaluator
|
| 9 |
-
from src.PrepareArticles import PrepareArticles
|
| 10 |
from src.fit_survival_function import fit_per_length_survival_function
|
| 11 |
from glob import glob
|
| 12 |
import spacy
|
|
@@ -96,16 +96,7 @@ def detect_human_text(model_name, topic, text):
|
|
| 96 |
min_tokens_per_sentence = 10
|
| 97 |
max_tokens_per_sentence = 100
|
| 98 |
|
| 99 |
-
|
| 100 |
-
cache_dir = "/cache/huggingface"
|
| 101 |
-
# Check if the directory exists and is writable
|
| 102 |
-
print(f"Cache directory exists: {os.path.exists(cache_dir)}")
|
| 103 |
-
print(f"Cache directory is writable: {os.access(cache_dir, os.W_OK)}")
|
| 104 |
-
|
| 105 |
-
# List contents of the directory
|
| 106 |
-
print("Contents of cache directory before loading model:")
|
| 107 |
-
os.system(f"ls -lah {cache_dir}")
|
| 108 |
-
###
|
| 109 |
|
| 110 |
# Init model
|
| 111 |
print('Init model')
|
|
@@ -114,17 +105,9 @@ def detect_human_text(model_name, topic, text):
|
|
| 114 |
tokenizer = AutoTokenizer.from_pretrained(lm_name, cache_dir=cache_dir)
|
| 115 |
model = AutoModelForCausalLM.from_pretrained(lm_name, cache_dir=cache_dir)
|
| 116 |
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
print(f"Current HF_HOME: {os.getenv('HF_HOME')}")
|
| 122 |
-
print(f"Current TRANSFORMERS_CACHE: {os.getenv('TRANSFORMERS_CACHE')}")
|
| 123 |
-
|
| 124 |
-
# Check where the tokenizer and model are actually downloaded
|
| 125 |
-
print(f"Tokenizer saved at: {tokenizer.save_pretrained(cache_dir)}")
|
| 126 |
-
print(f"Model saved at: {model.save_pretrained(cache_dir)}")
|
| 127 |
-
###
|
| 128 |
|
| 129 |
print('Init PerplexityEvaluator')
|
| 130 |
sentence_detector = PerplexityEvaluator(model, tokenizer)
|
|
|
|
| 6 |
import pickle
|
| 7 |
from src.DetectLM import DetectLM
|
| 8 |
from src.PerplexityEvaluator import PerplexityEvaluator
|
| 9 |
+
from src.PrepareArticles import PrepareArticles
|
| 10 |
from src.fit_survival_function import fit_per_length_survival_function
|
| 11 |
from glob import glob
|
| 12 |
import spacy
|
|
|
|
| 96 |
min_tokens_per_sentence = 10
|
| 97 |
max_tokens_per_sentence = 100
|
| 98 |
|
| 99 |
+
cache_dir = f"/cache/huggingface/{model_name}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
# Init model
|
| 102 |
print('Init model')
|
|
|
|
| 105 |
tokenizer = AutoTokenizer.from_pretrained(lm_name, cache_dir=cache_dir)
|
| 106 |
model = AutoModelForCausalLM.from_pretrained(lm_name, cache_dir=cache_dir)
|
| 107 |
|
| 108 |
+
print("Save model")
|
| 109 |
+
tokenizer.save_pretrained(cache_dir)
|
| 110 |
+
model.save_pretrained(cache_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
print('Init PerplexityEvaluator')
|
| 113 |
sentence_detector = PerplexityEvaluator(model, tokenizer)
|