Update human_text_detect.py
Browse files- human_text_detect.py +169 -169
human_text_detect.py
CHANGED
|
@@ -1,169 +1,169 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import pandas as pd
|
| 3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
-
import logging
|
| 5 |
-
import numpy as np
|
| 6 |
-
import pickle
|
| 7 |
-
from src.DetectLM import DetectLM
|
| 8 |
-
from src.PerplexityEvaluator import PerplexityEvaluator
|
| 9 |
-
from src.PrepareArticles import PrepareArticles #Idan
|
| 10 |
-
from src.fit_survival_function import fit_per_length_survival_function
|
| 11 |
-
from glob import glob
|
| 12 |
-
import spacy
|
| 13 |
-
import re
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
logging.basicConfig(level=logging.INFO)
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
def read_all_csv_files(pattern):
|
| 20 |
-
df = pd.DataFrame()
|
| 21 |
-
print(pattern)
|
| 22 |
-
for f in glob(pattern):
|
| 23 |
-
df = pd.concat([df, pd.read_csv(f)])
|
| 24 |
-
return df
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
def get_survival_function(df, G=101):
|
| 28 |
-
"""
|
| 29 |
-
Returns a survival function for every sentence length in tokens.
|
| 30 |
-
|
| 31 |
-
Args:
|
| 32 |
-
:df: data frame with columns 'response' and 'length'
|
| 33 |
-
:G: number of interpolation points
|
| 34 |
-
|
| 35 |
-
Return:
|
| 36 |
-
bivariate function (length, responce) -> (0,1)
|
| 37 |
-
|
| 38 |
-
"""
|
| 39 |
-
assert not df.empty
|
| 40 |
-
value_name = "response" if "response" in df.columns else "logloss"
|
| 41 |
-
|
| 42 |
-
df1 = df[~df[value_name].isna()]
|
| 43 |
-
ll = df1['length']
|
| 44 |
-
xx1 = df1[value_name]
|
| 45 |
-
return fit_per_length_survival_function(ll, xx1, log_space=True, G=G)
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
def mark_edits_remove_tags(chunks, tag="edit"):
|
| 49 |
-
text_chunks = chunks['text']
|
| 50 |
-
edits = []
|
| 51 |
-
for i,text in enumerate(text_chunks):
|
| 52 |
-
chunk_text = re.findall(rf"<{tag}>(.+)</{tag}>", text)
|
| 53 |
-
if len(chunk_text) > 0:
|
| 54 |
-
import pdb; pdb.set_trace()
|
| 55 |
-
chunks['text'][i] = chunk_text[0]
|
| 56 |
-
chunks['length'][i] -= 2
|
| 57 |
-
edits.append(True)
|
| 58 |
-
else:
|
| 59 |
-
edits.append(False)
|
| 60 |
-
|
| 61 |
-
return chunks, edits
|
| 62 |
-
|
| 63 |
-
def get_null_data(model_name, topic):
|
| 64 |
-
data = None
|
| 65 |
-
try:
|
| 66 |
-
file = open(f'nullData/{model_name}_{topic}.pkl', 'rb')
|
| 67 |
-
data = pickle.load(file)
|
| 68 |
-
except:
|
| 69 |
-
pass
|
| 70 |
-
|
| 71 |
-
return data
|
| 72 |
-
|
| 73 |
-
def get_threshold_obj(model_name, topic):
|
| 74 |
-
threshold = None
|
| 75 |
-
try:
|
| 76 |
-
file = open('threshold_obj.pkl', 'rb')
|
| 77 |
-
threshold_obj = pickle.load(file)
|
| 78 |
-
threshold = threshold_obj[model_name][topic]
|
| 79 |
-
except:
|
| 80 |
-
pass
|
| 81 |
-
|
| 82 |
-
return threshold
|
| 83 |
-
|
| 84 |
-
def detect_human_text(model_name, topic, text):
|
| 85 |
-
|
| 86 |
-
# Get null data
|
| 87 |
-
print('Get null data')
|
| 88 |
-
df_null = get_null_data(model_name, topic)
|
| 89 |
-
if 'num' in df_null.columns:
|
| 90 |
-
df_null = df_null[df_null.num > 1]
|
| 91 |
-
|
| 92 |
-
# Get survival function
|
| 93 |
-
print('Get survival function')
|
| 94 |
-
pval_functions = get_survival_function(df_null, G=43)
|
| 95 |
-
|
| 96 |
-
min_tokens_per_sentence = 10
|
| 97 |
-
max_tokens_per_sentence = 100
|
| 98 |
-
|
| 99 |
-
# Init model
|
| 100 |
-
print('Init model')
|
| 101 |
-
lm_name = 'gpt2-xl' if model_name == 'GPT2XL' else 'microsoft/phi-2'
|
| 102 |
-
tokenizer = AutoTokenizer.from_pretrained(lm_name)
|
| 103 |
-
model = AutoModelForCausalLM.from_pretrained(lm_name)
|
| 104 |
-
|
| 105 |
-
print('Init PerplexityEvaluator')
|
| 106 |
-
sentence_detector = PerplexityEvaluator(model, tokenizer)
|
| 107 |
-
|
| 108 |
-
if torch.backends.mps.is_available():
|
| 109 |
-
device = 'mps'
|
| 110 |
-
elif torch.cuda.is_available():
|
| 111 |
-
device = 'cuda'
|
| 112 |
-
else:
|
| 113 |
-
device = 'cpu'
|
| 114 |
-
|
| 115 |
-
print(f'device {device}')
|
| 116 |
-
model.to(device)
|
| 117 |
-
|
| 118 |
-
print('Init DetectLM')
|
| 119 |
-
detector = DetectLM(sentence_detector, pval_functions,
|
| 120 |
-
min_len=min_tokens_per_sentence,
|
| 121 |
-
max_len=max_tokens_per_sentence,
|
| 122 |
-
length_limit_policy='truncate',
|
| 123 |
-
HC_type='stbl',
|
| 124 |
-
ignore_first_sentence= False
|
| 125 |
-
)
|
| 126 |
-
|
| 127 |
-
# Convert text to object
|
| 128 |
-
print('Analyze text')
|
| 129 |
-
article_obj = get_article_obj(text)
|
| 130 |
-
parser = PrepareArticles(article_obj, min_tokens=min_tokens_per_sentence, max_tokens=max_tokens_per_sentence)
|
| 131 |
-
chunks = parser(combined=False)
|
| 132 |
-
|
| 133 |
-
# Go over all the document
|
| 134 |
-
for i in range(len(chunks['text'])):
|
| 135 |
-
print(chunks['text'][i])
|
| 136 |
-
# for p,v in enumerate(chunks['text'][i]):
|
| 137 |
-
# print(f'{p}: {v}')
|
| 138 |
-
res = detector(chunks['text'][i], chunks['context'][i], dashboard=None)
|
| 139 |
-
|
| 140 |
-
# print(f"Num of Edits (rate) = {np.sum(df['tag'] == '<edit>')} ({edit_rate})")
|
| 141 |
-
# print(f"HC = {res['HC']}")
|
| 142 |
-
# print(f"Fisher = {res['fisher']}")
|
| 143 |
-
# print(f"Fisher (chisquared pvalue) = {res['fisher_pvalue']}")
|
| 144 |
-
|
| 145 |
-
results = res['HC']
|
| 146 |
-
|
| 147 |
-
threshold = get_threshold_obj(model_name, topic)
|
| 148 |
-
print(f"threshold: {threshold}, results: {results}")
|
| 149 |
-
return
|
| 150 |
-
|
| 151 |
-
# Convert article text into object
|
| 152 |
-
def get_article_obj(text):
|
| 153 |
-
# Init article object
|
| 154 |
-
article_obj = {
|
| 155 |
-
'sub_titles': [{
|
| 156 |
-
'sentences': []
|
| 157 |
-
}]
|
| 158 |
-
}
|
| 159 |
-
|
| 160 |
-
nlp = spacy.load("en_core_web_sm") # Load model
|
| 161 |
-
|
| 162 |
-
for line in text.split('\n'):
|
| 163 |
-
doc = nlp(line) # Analyze text
|
| 164 |
-
sentences = [sent.text for sent in doc.sents if len(sent) >= 10] # Split it by sentence
|
| 165 |
-
for sentence in sentences:
|
| 166 |
-
sentence = re.sub(r' +', ' ', sentence) # Remove duplicate spaces
|
| 167 |
-
article_obj['sub_titles'][0]['sentences'].append({'sentence': sentence})
|
| 168 |
-
|
| 169 |
-
return article_obj
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
+
import logging
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pickle
|
| 7 |
+
from src.DetectLM import DetectLM
|
| 8 |
+
from src.PerplexityEvaluator import PerplexityEvaluator
|
| 9 |
+
from src.PrepareArticles import PrepareArticles #Idan
|
| 10 |
+
from src.fit_survival_function import fit_per_length_survival_function
|
| 11 |
+
from glob import glob
|
| 12 |
+
import spacy
|
| 13 |
+
import re
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
logging.basicConfig(level=logging.INFO)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def read_all_csv_files(pattern):
|
| 20 |
+
df = pd.DataFrame()
|
| 21 |
+
print(pattern)
|
| 22 |
+
for f in glob(pattern):
|
| 23 |
+
df = pd.concat([df, pd.read_csv(f)])
|
| 24 |
+
return df
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def get_survival_function(df, G=101):
|
| 28 |
+
"""
|
| 29 |
+
Returns a survival function for every sentence length in tokens.
|
| 30 |
+
|
| 31 |
+
Args:
|
| 32 |
+
:df: data frame with columns 'response' and 'length'
|
| 33 |
+
:G: number of interpolation points
|
| 34 |
+
|
| 35 |
+
Return:
|
| 36 |
+
bivariate function (length, responce) -> (0,1)
|
| 37 |
+
|
| 38 |
+
"""
|
| 39 |
+
assert not df.empty
|
| 40 |
+
value_name = "response" if "response" in df.columns else "logloss"
|
| 41 |
+
|
| 42 |
+
df1 = df[~df[value_name].isna()]
|
| 43 |
+
ll = df1['length']
|
| 44 |
+
xx1 = df1[value_name]
|
| 45 |
+
return fit_per_length_survival_function(ll, xx1, log_space=True, G=G)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def mark_edits_remove_tags(chunks, tag="edit"):
|
| 49 |
+
text_chunks = chunks['text']
|
| 50 |
+
edits = []
|
| 51 |
+
for i,text in enumerate(text_chunks):
|
| 52 |
+
chunk_text = re.findall(rf"<{tag}>(.+)</{tag}>", text)
|
| 53 |
+
if len(chunk_text) > 0:
|
| 54 |
+
import pdb; pdb.set_trace()
|
| 55 |
+
chunks['text'][i] = chunk_text[0]
|
| 56 |
+
chunks['length'][i] -= 2
|
| 57 |
+
edits.append(True)
|
| 58 |
+
else:
|
| 59 |
+
edits.append(False)
|
| 60 |
+
|
| 61 |
+
return chunks, edits
|
| 62 |
+
|
| 63 |
+
def get_null_data(model_name, topic):
|
| 64 |
+
data = None
|
| 65 |
+
try:
|
| 66 |
+
file = open(f'nullData/{model_name}_{topic}.pkl', 'rb')
|
| 67 |
+
data = pickle.load(file)
|
| 68 |
+
except:
|
| 69 |
+
pass
|
| 70 |
+
|
| 71 |
+
return data
|
| 72 |
+
|
| 73 |
+
def get_threshold_obj(model_name, topic):
|
| 74 |
+
threshold = None
|
| 75 |
+
try:
|
| 76 |
+
file = open('threshold_obj.pkl', 'rb')
|
| 77 |
+
threshold_obj = pickle.load(file)
|
| 78 |
+
threshold = threshold_obj[model_name][topic]
|
| 79 |
+
except:
|
| 80 |
+
pass
|
| 81 |
+
|
| 82 |
+
return threshold
|
| 83 |
+
|
| 84 |
+
def detect_human_text(model_name, topic, text):
|
| 85 |
+
|
| 86 |
+
# Get null data
|
| 87 |
+
print('Get null data')
|
| 88 |
+
df_null = get_null_data(model_name, topic)
|
| 89 |
+
if 'num' in df_null.columns:
|
| 90 |
+
df_null = df_null[df_null.num > 1]
|
| 91 |
+
|
| 92 |
+
# Get survival function
|
| 93 |
+
print('Get survival function')
|
| 94 |
+
pval_functions = get_survival_function(df_null, G=43)
|
| 95 |
+
|
| 96 |
+
min_tokens_per_sentence = 10
|
| 97 |
+
max_tokens_per_sentence = 100
|
| 98 |
+
|
| 99 |
+
# Init model
|
| 100 |
+
print('Init model')
|
| 101 |
+
lm_name = 'gpt2-xl' if model_name == 'GPT2XL' else 'microsoft/phi-2'
|
| 102 |
+
tokenizer = AutoTokenizer.from_pretrained(lm_name)
|
| 103 |
+
model = AutoModelForCausalLM.from_pretrained(lm_name)
|
| 104 |
+
|
| 105 |
+
print('Init PerplexityEvaluator')
|
| 106 |
+
sentence_detector = PerplexityEvaluator(model, tokenizer)
|
| 107 |
+
|
| 108 |
+
if torch.backends.mps.is_available():
|
| 109 |
+
device = 'mps'
|
| 110 |
+
elif torch.cuda.is_available():
|
| 111 |
+
device = 'cuda'
|
| 112 |
+
else:
|
| 113 |
+
device = 'cpu'
|
| 114 |
+
|
| 115 |
+
print(f'device {device}')
|
| 116 |
+
model.to(device)
|
| 117 |
+
|
| 118 |
+
print('Init DetectLM')
|
| 119 |
+
detector = DetectLM(sentence_detector, pval_functions,
|
| 120 |
+
min_len=min_tokens_per_sentence,
|
| 121 |
+
max_len=max_tokens_per_sentence,
|
| 122 |
+
length_limit_policy='truncate',
|
| 123 |
+
HC_type='stbl',
|
| 124 |
+
ignore_first_sentence= False
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
# Convert text to object
|
| 128 |
+
print('Analyze text')
|
| 129 |
+
article_obj = get_article_obj(text)
|
| 130 |
+
parser = PrepareArticles(article_obj, min_tokens=min_tokens_per_sentence, max_tokens=max_tokens_per_sentence)
|
| 131 |
+
chunks = parser(combined=False)
|
| 132 |
+
|
| 133 |
+
# Go over all the document
|
| 134 |
+
for i in range(len(chunks['text'])):
|
| 135 |
+
print(chunks['text'][i])
|
| 136 |
+
# for p,v in enumerate(chunks['text'][i]):
|
| 137 |
+
# print(f'{p}: {v}')
|
| 138 |
+
res = detector(chunks['text'][i], chunks['context'][i], dashboard=None)
|
| 139 |
+
|
| 140 |
+
# print(f"Num of Edits (rate) = {np.sum(df['tag'] == '<edit>')} ({edit_rate})")
|
| 141 |
+
# print(f"HC = {res['HC']}")
|
| 142 |
+
# print(f"Fisher = {res['fisher']}")
|
| 143 |
+
# print(f"Fisher (chisquared pvalue) = {res['fisher_pvalue']}")
|
| 144 |
+
|
| 145 |
+
results = res['HC']
|
| 146 |
+
|
| 147 |
+
threshold = get_threshold_obj(model_name, topic)
|
| 148 |
+
print(f"threshold: {threshold}, results: {results}")
|
| 149 |
+
return (results / threshold) - 1, res['sentences']
|
| 150 |
+
|
| 151 |
+
# Convert article text into object
|
| 152 |
+
def get_article_obj(text):
|
| 153 |
+
# Init article object
|
| 154 |
+
article_obj = {
|
| 155 |
+
'sub_titles': [{
|
| 156 |
+
'sentences': []
|
| 157 |
+
}]
|
| 158 |
+
}
|
| 159 |
+
|
| 160 |
+
nlp = spacy.load("en_core_web_sm") # Load model
|
| 161 |
+
|
| 162 |
+
for line in text.split('\n'):
|
| 163 |
+
doc = nlp(line) # Analyze text
|
| 164 |
+
sentences = [sent.text for sent in doc.sents if len(sent) >= 10] # Split it by sentence
|
| 165 |
+
for sentence in sentences:
|
| 166 |
+
sentence = re.sub(r' +', ' ', sentence) # Remove duplicate spaces
|
| 167 |
+
article_obj['sub_titles'][0]['sentences'].append({'sentence': sentence})
|
| 168 |
+
|
| 169 |
+
return article_obj
|