update: space hardware
Browse files- .gitignore +3 -1
- app.py +52 -14
- app_local.py +73 -0
.gitignore
CHANGED
|
@@ -1,2 +1,4 @@
|
|
| 1 |
.env
|
| 2 |
-
__pycache__/
|
|
|
|
|
|
|
|
|
| 1 |
.env
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.mp4
|
| 4 |
+
*.jpg
|
app.py
CHANGED
|
@@ -1,21 +1,57 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import torchvision
|
| 4 |
-
from diffusers import I2VGenXLPipeline
|
| 5 |
-
from
|
| 6 |
from PIL import Image
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
pipeline.enable_model_cpu_offload()
|
| 14 |
-
pipeline.unet.enable_forward_chunking()
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
prompt=prompt,
|
| 20 |
image=image,
|
| 21 |
num_inference_steps=50,
|
|
@@ -24,12 +60,14 @@ def generate(image: Image.Image, prompt: str):
|
|
| 24 |
generator=generator,
|
| 25 |
decode_chunk_size=6,
|
| 26 |
).frames[0]
|
| 27 |
-
|
|
|
|
|
|
|
| 28 |
return "video.mp4"
|
| 29 |
|
| 30 |
app = gr.Interface(
|
| 31 |
fn=generate,
|
| 32 |
-
inputs=[
|
| 33 |
outputs=gr.Video()
|
| 34 |
)
|
| 35 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import torchvision
|
| 4 |
+
from diffusers import I2VGenXLPipeline, DiffusionPipeline
|
| 5 |
+
from torchvision.transforms.functional import to_tensor
|
| 6 |
from PIL import Image
|
| 7 |
|
| 8 |
+
if gr.NO_RELOAD:
|
| 9 |
+
n_steps = 40
|
| 10 |
+
high_noise_frac = 0.8
|
| 11 |
+
negative_prompt = "Distorted, discontinuous, Ugly, blurry, low resolution, motionless, static, disfigured, disconnected limbs, Ugly faces, incomplete arms"
|
| 12 |
+
generator = torch.manual_seed(8888)
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
base = DiffusionPipeline.from_pretrained(
|
| 15 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 16 |
+
torch_dtype=torch.float16,
|
| 17 |
+
variant="fp16",
|
| 18 |
+
use_safetensors=True,
|
| 19 |
+
)
|
| 20 |
+
# refiner = DiffusionPipeline.from_pretrained(
|
| 21 |
+
# "stabilityai/stable-diffusion-xl-refiner-1.0",
|
| 22 |
+
# text_encoder_2=base.text_encoder_2,
|
| 23 |
+
# vae=base.vae,
|
| 24 |
+
# torch_dtype=torch.float16,
|
| 25 |
+
# use_safetensors=True,
|
| 26 |
+
# variant="fp16",
|
| 27 |
+
# )
|
| 28 |
+
# refiner.to("cuda")
|
| 29 |
+
# base.to("cuda")
|
| 30 |
+
# refiner.enable_model_cpu_offload()
|
| 31 |
+
base.enable_model_cpu_offload()
|
| 32 |
+
pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16")
|
| 33 |
+
pipeline.enable_model_cpu_offload()
|
| 34 |
+
pipeline.unet.enable_forward_chunking()
|
| 35 |
+
|
| 36 |
+
def generate(prompt: str):
|
| 37 |
+
image = base(
|
| 38 |
+
prompt=prompt,
|
| 39 |
+
num_inference_steps=n_steps,
|
| 40 |
+
# denoising_end=high_noise_frac,
|
| 41 |
+
# output_type="latent",
|
| 42 |
+
).images[0]
|
| 43 |
+
# image = refiner(
|
| 44 |
+
# prompt=prompt,
|
| 45 |
+
# num_inference_steps=n_steps,
|
| 46 |
+
# denoising_start=high_noise_frac,
|
| 47 |
+
# image=image,
|
| 48 |
+
# ).images[0]
|
| 49 |
+
# print(image)
|
| 50 |
+
# print(type(image))
|
| 51 |
+
# print(image.size())
|
| 52 |
+
image.save("frame.jpg")
|
| 53 |
+
image = to_tensor(image)
|
| 54 |
+
frames: list[Image.Image] = pipeline(
|
| 55 |
prompt=prompt,
|
| 56 |
image=image,
|
| 57 |
num_inference_steps=50,
|
|
|
|
| 60 |
generator=generator,
|
| 61 |
decode_chunk_size=6,
|
| 62 |
).frames[0]
|
| 63 |
+
frames = [to_tensor(frame.convert("RGB")).mul(255).byte().permute(1, 2, 0) for frame in frames]
|
| 64 |
+
frames = torch.stack(frames)
|
| 65 |
+
torchvision.io.write_video("video.mp4", frames, fps=4)
|
| 66 |
return "video.mp4"
|
| 67 |
|
| 68 |
app = gr.Interface(
|
| 69 |
fn=generate,
|
| 70 |
+
inputs=["text"],
|
| 71 |
outputs=gr.Video()
|
| 72 |
)
|
| 73 |
|
app_local.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import torchvision
|
| 4 |
+
from diffusers import I2VGenXLPipeline, DiffusionPipeline
|
| 5 |
+
from torchvision.transforms.functional import to_tensor
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
if gr.NO_RELOAD:
|
| 9 |
+
n_steps = 50
|
| 10 |
+
high_noise_frac = 0.8
|
| 11 |
+
negative_prompt = "Distorted, discontinuous, Ugly, blurry, low resolution, motionless, static, disfigured, disconnected limbs, Ugly faces, incomplete arms"
|
| 12 |
+
generator = torch.manual_seed(8888)
|
| 13 |
+
|
| 14 |
+
base = DiffusionPipeline.from_pretrained(
|
| 15 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 16 |
+
torch_dtype=torch.float16,
|
| 17 |
+
variant="fp16",
|
| 18 |
+
use_safetensors=True,
|
| 19 |
+
)
|
| 20 |
+
refiner = DiffusionPipeline.from_pretrained(
|
| 21 |
+
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
| 22 |
+
text_encoder_2=base.text_encoder_2,
|
| 23 |
+
vae=base.vae,
|
| 24 |
+
torch_dtype=torch.float16,
|
| 25 |
+
use_safetensors=True,
|
| 26 |
+
variant="fp16",
|
| 27 |
+
)
|
| 28 |
+
pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16")
|
| 29 |
+
|
| 30 |
+
base.to("cuda")
|
| 31 |
+
refiner.to("cuda")
|
| 32 |
+
pipeline.to("cuda")
|
| 33 |
+
|
| 34 |
+
base.unet = torch.compile(base.unet, mode="reduce-overhead", fullgraph=True)
|
| 35 |
+
refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)
|
| 36 |
+
pipeline.unet = torch.compile(pipeline.unet, mode="reduce-overhead", fullgraph=True)
|
| 37 |
+
|
| 38 |
+
def generate(prompt: str):
|
| 39 |
+
image = base(
|
| 40 |
+
prompt=prompt,
|
| 41 |
+
num_inference_steps=n_steps,
|
| 42 |
+
denoising_end=high_noise_frac,
|
| 43 |
+
output_type="latent",
|
| 44 |
+
).images[0]
|
| 45 |
+
image = refiner(
|
| 46 |
+
prompt=prompt,
|
| 47 |
+
num_inference_steps=n_steps,
|
| 48 |
+
denoising_start=high_noise_frac,
|
| 49 |
+
image=image,
|
| 50 |
+
).images[0]
|
| 51 |
+
image = to_tensor(image)
|
| 52 |
+
frames: list[Image.Image] = pipeline(
|
| 53 |
+
prompt=prompt,
|
| 54 |
+
image=image,
|
| 55 |
+
num_inference_steps=50,
|
| 56 |
+
negative_prompt=negative_prompt,
|
| 57 |
+
guidance_scale=9.0,
|
| 58 |
+
generator=generator,
|
| 59 |
+
).frames[0]
|
| 60 |
+
frames = [to_tensor(frame.convert("RGB")).mul(255).byte().permute(1, 2, 0) for frame in frames]
|
| 61 |
+
frames = torch.stack(frames)
|
| 62 |
+
torchvision.io.write_video("video.mp4", frames, fps=8)
|
| 63 |
+
return "video.mp4"
|
| 64 |
+
|
| 65 |
+
app = gr.Interface(
|
| 66 |
+
fn=generate,
|
| 67 |
+
inputs=["text"],
|
| 68 |
+
outputs=gr.Video()
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
if __name__ == "__main__":
|
| 72 |
+
app.launch()
|
| 73 |
+
|