AIC / app.py
ikhlasulakmalh's picture
Create app.py
94002ab
raw
history blame
744 Bytes
import streamlit as st
import numpy as np
from keras.models import load_model
from PIL import Image
model = load_model('./model.hdf5')
st.title('Fire Detection Image')
uploaded_file = st.file_uploader("Choose an image: ", type="jpg")
if uploaded_file is not None:
img = Image.open(uploaded_file)
img = img.resize((256, 256))
img_array = np.array(img)
img_array = np.expand_dims(img_array, axis=0)
if st.button('Predict'):
prediction = model.predict(image_batch)
predicted_class_index = np.argmax(prediction)
class_labels = {0: 'COVID19', 1: 'NORMAL', 2: 'PNEUMONIA', 3: 'TURBERCULOSIS'}
predicted_class_label = class_labels[predicted_class_index]
st.write(predicted_class_label)