Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import numpy as np | |
| from tensorflow.keras.preprocessing.image import load_img, img_to_array | |
| from tensorflow.keras.applications.densenet import preprocess_input | |
| from tensorflow.keras.models import load_model | |
| # Load the pre-trained model | |
| model = load_model("./best_weights.hdf5") # Replace with the path to your model | |
| class_labels = {0: 'COVID19', 1: 'NORMAL', 2: 'PNEUMONIA', 3: 'TURBERCULOSIS'} | |
| def main(): | |
| st.title("Respiratory Symptom Prediction") | |
| st.write("Upload an image to predict the respiratory symptom.") | |
| uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
| if uploaded_file is not None: | |
| # Load and preprocess the uploaded image | |
| image = load_img(uploaded_file, target_size=(224, 224)) | |
| image_array = img_to_array(image) | |
| image_preprocessed = preprocess_input(image_array) | |
| image_batch = np.expand_dims(image_preprocessed, axis=0) | |
| # Make predictions | |
| predictions = model.predict(image_batch) | |
| st.write(predictions) | |
| predicted_class_index = np.argmax(predictions) | |
| predicted_class_label = class_labels[predicted_class_index] | |
| # Display the uploaded image and prediction result | |
| st.image(image, caption="Uploaded Image", use_column_width=True) | |
| st.write(f"Predicted class label: {predicted_class_label}") | |
| if __name__ == "__main__": | |
| main() | |