added fastAPI at chatbot.py
Browse files- chatbot.py +66 -55
chatbot.py
CHANGED
|
@@ -1,55 +1,66 @@
|
|
| 1 |
-
from
|
| 2 |
-
from
|
| 3 |
-
from
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
index
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
retriever
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
| 4 |
+
from sentence_transformers import SentenceTransformer
|
| 5 |
+
from pinecone import Pinecone
|
| 6 |
+
|
| 7 |
+
device = 'cpu'
|
| 8 |
+
|
| 9 |
+
# Initialize Pinecone instance
|
| 10 |
+
pc = Pinecone(api_key='89eeb534-da10-4068-92f7-12eddeabe1e5')
|
| 11 |
+
|
| 12 |
+
# Check if the index exists; if not, create it
|
| 13 |
+
index_name = 'abstractive-question-answering'
|
| 14 |
+
index = pc.Index(index_name)
|
| 15 |
+
|
| 16 |
+
# Initialize FastAPI app
|
| 17 |
+
app = FastAPI()
|
| 18 |
+
|
| 19 |
+
# Initialize the models
|
| 20 |
+
def load_models():
|
| 21 |
+
print("Loading models...")
|
| 22 |
+
|
| 23 |
+
retriever = SentenceTransformer("flax-sentence-embeddings/all_datasets_v3_mpnet-base")
|
| 24 |
+
tokenizer = T5Tokenizer.from_pretrained('t5-base')
|
| 25 |
+
generator = T5ForConditionalGeneration.from_pretrained('t5-base').to(device)
|
| 26 |
+
|
| 27 |
+
return retriever, generator, tokenizer
|
| 28 |
+
|
| 29 |
+
retriever, generator, tokenizer = load_models()
|
| 30 |
+
|
| 31 |
+
class QueryInput(BaseModel):
|
| 32 |
+
input: str
|
| 33 |
+
|
| 34 |
+
@app.post("/predict")
|
| 35 |
+
def predict(query: QueryInput):
|
| 36 |
+
query_text = query.input
|
| 37 |
+
# Query Pinecone
|
| 38 |
+
xq = retriever.encode([query_text]).tolist()
|
| 39 |
+
xc = index.query(vector=xq, top_k=1, include_metadata=True)
|
| 40 |
+
|
| 41 |
+
# Check if 'matches' exists and is a list
|
| 42 |
+
if 'matches' in xc and isinstance(xc['matches'], list):
|
| 43 |
+
context = [m['metadata']['Output'] for m in xc['matches']]
|
| 44 |
+
context_str = " ".join(context)
|
| 45 |
+
formatted_query = f"answer the question: {query_text} context: {context_str}"
|
| 46 |
+
else:
|
| 47 |
+
# Handle the case where 'matches' isn't found or isn't in the expected format
|
| 48 |
+
context_str = ""
|
| 49 |
+
formatted_query = f"answer the question: {query_text} context: {context_str}"
|
| 50 |
+
|
| 51 |
+
# Generate answer using T5 model
|
| 52 |
+
output_text = context_str
|
| 53 |
+
if len(output_text.splitlines()) > 5:
|
| 54 |
+
return {"response": output_text}
|
| 55 |
+
|
| 56 |
+
if output_text.lower() == "none":
|
| 57 |
+
return {"response": "The topic is not covered in the student manual."}
|
| 58 |
+
|
| 59 |
+
inputs = tokenizer.encode(formatted_query, return_tensors="pt", max_length=512, truncation=True).to(device)
|
| 60 |
+
ids = generator.generate(inputs, num_beams=4, min_length=10, max_length=60, repetition_penalty=1.2)
|
| 61 |
+
answer = tokenizer.decode(ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
| 62 |
+
|
| 63 |
+
return {"response": answer}
|
| 64 |
+
|
| 65 |
+
# To run the server (use uvicorn when deploying):
|
| 66 |
+
# uvicorn chatbot:app --reload
|