Spaces:
Runtime error
Runtime error
| import torch | |
| import torchvision.transforms as transforms | |
| from PIL import Image | |
| import sys | |
| import numpy as np | |
| from scipy.special import betainc | |
| device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
| msg_decoder_path = sys.argv[3] | |
| img_path = sys.argv[1] | |
| key = int(sys.argv[2]) | |
| transform_imnet = transforms.Compose([ | |
| transforms.ToTensor(), | |
| # transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225]) | |
| transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5, 0.5, 0.5]) | |
| ]) | |
| img = Image.open(sys.argv[1]).convert("RGB").resize((256, 256), Image.BICUBIC) | |
| img = transform_imnet(img).unsqueeze(0).to(device) | |
| print("img.min", img.min()) | |
| print("img.max", img.max()) | |
| print("img.shape", img.shape) | |
| msg_decoder = torch.jit.load(msg_decoder_path).to(device) | |
| msg_decoder.eval() | |
| with torch.no_grad(): | |
| dec = msg_decoder(img)[0].cpu().numpy() | |
| #print("dec = ", dec) | |
| print("dec = ", dec.shape) | |
| msg = np.random.default_rng(seed=key).standard_normal(256) | |
| msg = msg / np.sqrt(np.dot(msg, msg)) | |
| print("dec.dec", dec.dot(dec)) | |
| print("msg.msg", msg.dot(msg)) | |
| print("dec.msg", dec.dot(msg)) | |
| cos_angle = dec.dot(msg) | |
| pfa = betainc((256 - 1) * 0.5, 0.5, 1 - cos_angle*cos_angle) | |
| print("pfa = ", pfa) | |