Update main.py
Browse files
main.py
CHANGED
|
@@ -1,29 +1,33 @@
|
|
| 1 |
-
import argparse
|
| 2 |
-
import pandas as pd
|
| 3 |
-
|
| 4 |
-
from
|
| 5 |
-
from
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
parser
|
| 10 |
-
parser.add_argument("--
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
# Step
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
# Step
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import streamlit as st
|
| 4 |
+
from generate_schema import generate_schema
|
| 5 |
+
from fetch_data import fetch_real_data
|
| 6 |
+
from synthetic_generator import train_and_generate_synthetic
|
| 7 |
+
|
| 8 |
+
def main():
|
| 9 |
+
parser = argparse.ArgumentParser()
|
| 10 |
+
parser.add_argument("--prompt", type=str, required=True, help="Describe the dataset you want")
|
| 11 |
+
parser.add_argument("--domain", type=str, default="healthcare", help="Domain to fetch real data from (optional)")
|
| 12 |
+
args = parser.parse_args()
|
| 13 |
+
|
| 14 |
+
# Retrieve API token from Streamlit secrets
|
| 15 |
+
hf_token = st.secrets["hf_token"]
|
| 16 |
+
|
| 17 |
+
# Step 1: Generate schema using LLM
|
| 18 |
+
schema = generate_schema(args.prompt, hf_token)
|
| 19 |
+
print(f"π Generated schema: {schema}")
|
| 20 |
+
|
| 21 |
+
# Step 2: Fetch real data (optional)
|
| 22 |
+
real_data = fetch_real_data(args.domain)
|
| 23 |
+
|
| 24 |
+
# Step 3: Preprocess (if necessary)
|
| 25 |
+
real_data = real_data[schema['columns']] # Match columns from schema
|
| 26 |
+
print(f"β
Fetched real data with shape: {real_data.shape}")
|
| 27 |
+
|
| 28 |
+
# Step 4: Train GAN and generate synthetic data
|
| 29 |
+
output_path = f"outputs/synthetic_{args.domain}.csv"
|
| 30 |
+
train_and_generate_synthetic(real_data, schema, output_path)
|
| 31 |
+
|
| 32 |
+
if __name__ == "__main__":
|
| 33 |
+
main()
|