Spaces:
Build error
Build error
| # coding=utf-8 | |
| # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Tokenization Fast class for InternLM.""" | |
| import os | |
| from shutil import copyfile | |
| from typing import Any, Dict, Optional, Tuple | |
| from tokenizers import processors, decoders, Tokenizer, normalizers | |
| from tokenizers.models import BPE | |
| from transformers.tokenization_utils_fast import PreTrainedTokenizerFast | |
| from transformers.utils import logging | |
| from transformers.convert_slow_tokenizer import ( | |
| SLOW_TO_FAST_CONVERTERS, | |
| SpmConverter, | |
| SentencePieceExtractor, | |
| ) | |
| from .tokenization_internlm2 import InternLM2Tokenizer | |
| logger = logging.get_logger(__name__) | |
| VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"} | |
| # Modified from transformers.convert_slow_tokenizer.LlamaConverter | |
| class InternLM2Converter(SpmConverter): | |
| handle_byte_fallback = True | |
| def vocab(self, proto): | |
| vocab = [ | |
| ("<unk>", 0.0), | |
| ("<s>", 0.0), | |
| ("</s>", 0.0), | |
| ] | |
| vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]] | |
| return vocab | |
| def unk_id(self, proto): | |
| unk_id = 0 | |
| return unk_id | |
| def decoder(self, replacement, add_prefix_space): | |
| decoders_sequence = [ | |
| decoders.Replace("▁", " "), | |
| decoders.ByteFallback(), | |
| decoders.Fuse(), | |
| ] | |
| if self.proto.normalizer_spec.add_dummy_prefix: | |
| decoders_sequence.append(decoders.Strip(content=" ", left=1)) | |
| return decoders.Sequence(decoders_sequence) | |
| def tokenizer(self, proto): | |
| model_type = proto.trainer_spec.model_type | |
| vocab_scores = self.vocab(proto) | |
| # special tokens | |
| added_tokens = self.original_tokenizer.added_tokens_decoder | |
| for i in range(len(vocab_scores)): | |
| piece, score = vocab_scores[i] | |
| if i in added_tokens: | |
| vocab_scores[i] = (added_tokens[i].content, score) | |
| if model_type == 1: | |
| raise RuntimeError("InternLM2 is supposed to be a BPE model!") | |
| elif model_type == 2: | |
| _, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores) | |
| bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)} | |
| tokenizer = Tokenizer( | |
| BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True) | |
| ) | |
| tokenizer.add_special_tokens( | |
| [ added_token for index, added_token in added_tokens.items()] | |
| ) | |
| else: | |
| raise Exception( | |
| "You're trying to run a `Unigram` model but you're file was trained with a different algorithm" | |
| ) | |
| return tokenizer | |
| def normalizer(self, proto): | |
| normalizers_list = [] | |
| if proto.normalizer_spec.add_dummy_prefix: | |
| normalizers_list.append(normalizers.Prepend(prepend="▁")) | |
| normalizers_list.append(normalizers.Replace(pattern=" ", content="▁")) | |
| return normalizers.Sequence(normalizers_list) | |
| def pre_tokenizer(self, replacement, add_prefix_space): | |
| return None | |
| SLOW_TO_FAST_CONVERTERS["InternLM2Tokenizer"] = InternLM2Converter | |
| # Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast | |
| class InternLM2TokenizerFast(PreTrainedTokenizerFast): | |
| vocab_files_names = VOCAB_FILES_NAMES | |
| slow_tokenizer_class = InternLM2Tokenizer | |
| padding_side = "left" | |
| model_input_names = ["input_ids", "attention_mask"] | |
| _auto_class = "AutoTokenizer" | |
| def __init__( | |
| self, | |
| vocab_file, | |
| unk_token="<unk>", | |
| bos_token="<s>", | |
| eos_token="</s>", | |
| pad_token="</s>", | |
| sp_model_kwargs: Optional[Dict[str, Any]] = None, | |
| add_bos_token=True, | |
| add_eos_token=False, | |
| decode_with_prefix_space=False, | |
| clean_up_tokenization_spaces=False, | |
| **kwargs, | |
| ): | |
| super().__init__( | |
| vocab_file=vocab_file, | |
| unk_token=unk_token, | |
| bos_token=bos_token, | |
| eos_token=eos_token, | |
| pad_token=pad_token, | |
| sp_model_kwargs=sp_model_kwargs, | |
| add_bos_token=add_bos_token, | |
| add_eos_token=add_eos_token, | |
| decode_with_prefix_space=decode_with_prefix_space, | |
| clean_up_tokenization_spaces=clean_up_tokenization_spaces, | |
| **kwargs, | |
| ) | |
| self._add_bos_token = add_bos_token | |
| self._add_eos_token = add_eos_token | |
| self.update_post_processor() | |
| self.vocab_file = vocab_file | |
| def can_save_slow_tokenizer(self) -> bool: | |
| return os.path.isfile(self.vocab_file) if self.vocab_file else False | |
| def update_post_processor(self): | |
| """ | |
| Updates the underlying post processor with the current `bos_token` and `eos_token`. | |
| """ | |
| bos = self.bos_token | |
| bos_token_id = self.bos_token_id | |
| if bos is None and self.add_bos_token: | |
| raise ValueError("add_bos_token = True but bos_token = None") | |
| eos = self.eos_token | |
| eos_token_id = self.eos_token_id | |
| if eos is None and self.add_eos_token: | |
| raise ValueError("add_eos_token = True but eos_token = None") | |
| single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}" | |
| pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}" | |
| special_tokens = [] | |
| if self.add_bos_token: | |
| special_tokens.append((bos, bos_token_id)) | |
| if self.add_eos_token: | |
| special_tokens.append((eos, eos_token_id)) | |
| self._tokenizer.post_processor = processors.TemplateProcessing( | |
| single=single, pair=pair, special_tokens=special_tokens | |
| ) | |
| def add_eos_token(self): | |
| return self._add_eos_token | |
| def add_bos_token(self): | |
| return self._add_bos_token | |
| def add_eos_token(self, value): | |
| self._add_eos_token = value | |
| self.update_post_processor() | |
| def add_bos_token(self, value): | |
| self._add_bos_token = value | |
| self.update_post_processor() | |
| def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
| if not self.can_save_slow_tokenizer: | |
| raise ValueError( | |
| "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " | |
| "tokenizer." | |
| ) | |
| if not os.path.isdir(save_directory): | |
| logger.error(f"Vocabulary path ({save_directory}) should be a directory") | |
| return | |
| out_vocab_file = os.path.join( | |
| save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] | |
| ) | |
| if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): | |
| copyfile(self.vocab_file, out_vocab_file) | |
| return (out_vocab_file,) | |