Spaces:
Build error
Build error
clean up
Browse files- .gitignore +1 -0
- README.md +5 -1
- llama-factory/config/llama3_8b_lora_sft.yaml +0 -46
- llama-factory/config/qwen2_0.5b_lora_sft.yaml +0 -42
- llama-factory/config/qwen2_0.5b_lora_sft_unsloth.yaml +0 -45
- llama-factory/config/qwen2_1.5b_lora_sft.yaml +0 -42
- llama-factory/config/qwen2_1.5b_lora_sft_unsloth.yaml +0 -45
- llama-factory/config/qwen2_7b_lora_sft.yaml +0 -45
- llama-factory/config/qwen2_7b_lora_sft_unsloth.yaml +0 -45
- llama-factory/data/alpaca_mac.json +0 -3
- llama-factory/data/dataset_info.json +0 -3
- llama-factory/inference/qwen2_1.5b_lora_sft.yaml +0 -4
- llm_toolkit/llm_utils.py +135 -35
- requirements.txt +7 -3
- scripts/lf-api.sh +0 -8
- scripts/tune-large.sh +0 -24
- scripts/tune-lf.sh +0 -9
- scripts/tune-medium.sh +0 -27
- scripts/tune-small-2.sh +0 -14
- scripts/tune-small.sh +0 -14
.gitignore
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
*.out
|
| 2 |
*.log
|
| 3 |
*/outputs/
|
|
|
|
| 1 |
+
*.run
|
| 2 |
*.out
|
| 3 |
*.log
|
| 4 |
*/outputs/
|
README.md
CHANGED
|
@@ -10,4 +10,8 @@ pinned: false
|
|
| 10 |
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
-
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
+
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
| 14 |
+
|
| 15 |
+
```
|
| 16 |
+
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124
|
| 17 |
+
```
|
llama-factory/config/llama3_8b_lora_sft.yaml
DELETED
|
@@ -1,46 +0,0 @@
|
|
| 1 |
-
### model
|
| 2 |
-
model_name_or_path: gradientai/Llama-3-8B-Instruct-Gradient-1048k
|
| 3 |
-
|
| 4 |
-
### method
|
| 5 |
-
stage: sft
|
| 6 |
-
do_train: true
|
| 7 |
-
finetuning_type: lora
|
| 8 |
-
lora_target: all
|
| 9 |
-
quantization_bit: 4 # use 4-bit QLoRA
|
| 10 |
-
loraplus_lr_ratio: 16.0 # use LoRA+ with lambda=16.0
|
| 11 |
-
# use_unsloth: true # use UnslothAI's LoRA optimization for 2x faster training
|
| 12 |
-
|
| 13 |
-
### dataset
|
| 14 |
-
dataset: alpaca_mac
|
| 15 |
-
template: llama3
|
| 16 |
-
cutoff_len: 1024
|
| 17 |
-
max_samples: 4528
|
| 18 |
-
overwrite_cache: true
|
| 19 |
-
preprocessing_num_workers: 16
|
| 20 |
-
|
| 21 |
-
### output
|
| 22 |
-
# output_dir: saves/llama3-8b/lora/sft
|
| 23 |
-
output_dir: /Workspace/Users/donghao.huang@mastercard.com/lf-saves/llama3-8b/lora/sft/
|
| 24 |
-
logging_steps: 10
|
| 25 |
-
save_steps: 560
|
| 26 |
-
plot_loss: true
|
| 27 |
-
overwrite_output_dir: true
|
| 28 |
-
# resume_from_checkpoint: true
|
| 29 |
-
|
| 30 |
-
### train
|
| 31 |
-
per_device_train_batch_size: 1
|
| 32 |
-
gradient_accumulation_steps: 8
|
| 33 |
-
learning_rate: 1.0e-4
|
| 34 |
-
num_train_epochs: 6.0
|
| 35 |
-
lr_scheduler_type: cosine
|
| 36 |
-
warmup_ratio: 0.1
|
| 37 |
-
bf16: true
|
| 38 |
-
ddp_timeout: 180000000
|
| 39 |
-
|
| 40 |
-
### eval
|
| 41 |
-
val_size: 0.01
|
| 42 |
-
per_device_eval_batch_size: 1
|
| 43 |
-
eval_strategy: steps
|
| 44 |
-
eval_steps: 560
|
| 45 |
-
|
| 46 |
-
report_to: none
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
llama-factory/config/qwen2_0.5b_lora_sft.yaml
DELETED
|
@@ -1,42 +0,0 @@
|
|
| 1 |
-
### model
|
| 2 |
-
model_name_or_path: Qwen/Qwen2-0.5B-Instruct
|
| 3 |
-
|
| 4 |
-
### method
|
| 5 |
-
stage: sft
|
| 6 |
-
do_train: true
|
| 7 |
-
finetuning_type: lora
|
| 8 |
-
lora_target: all
|
| 9 |
-
|
| 10 |
-
### dataset
|
| 11 |
-
dataset: alpaca_mac
|
| 12 |
-
template: chatml
|
| 13 |
-
cutoff_len: 1024
|
| 14 |
-
max_samples: 4528
|
| 15 |
-
overwrite_cache: true
|
| 16 |
-
preprocessing_num_workers: 16
|
| 17 |
-
|
| 18 |
-
### output
|
| 19 |
-
output_dir: saves/qwen2-0.5b/lora/sft
|
| 20 |
-
logging_steps: 10
|
| 21 |
-
save_steps: 560
|
| 22 |
-
plot_loss: true
|
| 23 |
-
overwrite_output_dir: true
|
| 24 |
-
|
| 25 |
-
### train
|
| 26 |
-
per_device_train_batch_size: 1
|
| 27 |
-
gradient_accumulation_steps: 8
|
| 28 |
-
learning_rate: 1.0e-4
|
| 29 |
-
num_train_epochs: 6.0
|
| 30 |
-
lr_scheduler_type: cosine
|
| 31 |
-
warmup_ratio: 0.1
|
| 32 |
-
bf16: true
|
| 33 |
-
ddp_timeout: 180000000
|
| 34 |
-
|
| 35 |
-
### eval
|
| 36 |
-
val_size: 0.01
|
| 37 |
-
per_device_eval_batch_size: 1
|
| 38 |
-
eval_strategy: steps
|
| 39 |
-
eval_steps: 560
|
| 40 |
-
|
| 41 |
-
report_to: wandb
|
| 42 |
-
run_name: qwen2_0.5b_lora_sft # optional
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
llama-factory/config/qwen2_0.5b_lora_sft_unsloth.yaml
DELETED
|
@@ -1,45 +0,0 @@
|
|
| 1 |
-
### model
|
| 2 |
-
model_name_or_path: Qwen/Qwen2-0.5B-Instruct
|
| 3 |
-
|
| 4 |
-
### method
|
| 5 |
-
stage: sft
|
| 6 |
-
do_train: true
|
| 7 |
-
finetuning_type: lora
|
| 8 |
-
lora_target: all
|
| 9 |
-
quantization_bit: 4 # use 4-bit QLoRA
|
| 10 |
-
loraplus_lr_ratio: 16.0 # use LoRA+ with lambda=16.0
|
| 11 |
-
use_unsloth: true # use UnslothAI's LoRA optimization for 2x faster training
|
| 12 |
-
|
| 13 |
-
### dataset
|
| 14 |
-
dataset: alpaca_mac
|
| 15 |
-
template: chatml
|
| 16 |
-
cutoff_len: 1024
|
| 17 |
-
max_samples: 4528
|
| 18 |
-
overwrite_cache: true
|
| 19 |
-
preprocessing_num_workers: 16
|
| 20 |
-
|
| 21 |
-
### output
|
| 22 |
-
output_dir: saves/qwen2-0.5b/lora/sft
|
| 23 |
-
logging_steps: 10
|
| 24 |
-
save_steps: 560
|
| 25 |
-
plot_loss: true
|
| 26 |
-
overwrite_output_dir: true
|
| 27 |
-
|
| 28 |
-
### train
|
| 29 |
-
per_device_train_batch_size: 1
|
| 30 |
-
gradient_accumulation_steps: 8
|
| 31 |
-
learning_rate: 1.0e-4
|
| 32 |
-
num_train_epochs: 6.0
|
| 33 |
-
lr_scheduler_type: cosine
|
| 34 |
-
warmup_ratio: 0.1
|
| 35 |
-
bf16: true
|
| 36 |
-
ddp_timeout: 180000000
|
| 37 |
-
|
| 38 |
-
### eval
|
| 39 |
-
val_size: 0.01
|
| 40 |
-
per_device_eval_batch_size: 1
|
| 41 |
-
eval_strategy: steps
|
| 42 |
-
eval_steps: 560
|
| 43 |
-
|
| 44 |
-
report_to: wandb
|
| 45 |
-
run_name: qwen2_0.5b_lora_sft # optional
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
llama-factory/config/qwen2_1.5b_lora_sft.yaml
DELETED
|
@@ -1,42 +0,0 @@
|
|
| 1 |
-
### model
|
| 2 |
-
model_name_or_path: Qwen/Qwen2-1.5B-Instruct
|
| 3 |
-
|
| 4 |
-
### method
|
| 5 |
-
stage: sft
|
| 6 |
-
do_train: true
|
| 7 |
-
finetuning_type: lora
|
| 8 |
-
lora_target: all
|
| 9 |
-
|
| 10 |
-
### dataset
|
| 11 |
-
dataset: alpaca_mac
|
| 12 |
-
template: chatml
|
| 13 |
-
cutoff_len: 1024
|
| 14 |
-
max_samples: 4528
|
| 15 |
-
overwrite_cache: true
|
| 16 |
-
preprocessing_num_workers: 16
|
| 17 |
-
|
| 18 |
-
### output
|
| 19 |
-
output_dir: saves/qwen2-1.5b/lora/sft
|
| 20 |
-
logging_steps: 10
|
| 21 |
-
save_steps: 560
|
| 22 |
-
plot_loss: true
|
| 23 |
-
overwrite_output_dir: true
|
| 24 |
-
|
| 25 |
-
### train
|
| 26 |
-
per_device_train_batch_size: 1
|
| 27 |
-
gradient_accumulation_steps: 8
|
| 28 |
-
learning_rate: 1.0e-4
|
| 29 |
-
num_train_epochs: 6.0
|
| 30 |
-
lr_scheduler_type: cosine
|
| 31 |
-
warmup_ratio: 0.1
|
| 32 |
-
bf16: true
|
| 33 |
-
ddp_timeout: 180000000
|
| 34 |
-
|
| 35 |
-
### eval
|
| 36 |
-
val_size: 0.01
|
| 37 |
-
per_device_eval_batch_size: 1
|
| 38 |
-
eval_strategy: steps
|
| 39 |
-
eval_steps: 560
|
| 40 |
-
|
| 41 |
-
report_to: wandb
|
| 42 |
-
run_name: qwen2_1.5b_lora_sft # optional
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
llama-factory/config/qwen2_1.5b_lora_sft_unsloth.yaml
DELETED
|
@@ -1,45 +0,0 @@
|
|
| 1 |
-
### model
|
| 2 |
-
model_name_or_path: Qwen/Qwen2-1.5B-Instruct
|
| 3 |
-
|
| 4 |
-
### method
|
| 5 |
-
stage: sft
|
| 6 |
-
do_train: true
|
| 7 |
-
finetuning_type: lora
|
| 8 |
-
lora_target: all
|
| 9 |
-
quantization_bit: 4 # use 4-bit QLoRA
|
| 10 |
-
loraplus_lr_ratio: 16.0 # use LoRA+ with lambda=16.0
|
| 11 |
-
use_unsloth: true # use UnslothAI's LoRA optimization for 2x faster training
|
| 12 |
-
|
| 13 |
-
### dataset
|
| 14 |
-
dataset: alpaca_mac
|
| 15 |
-
template: chatml
|
| 16 |
-
cutoff_len: 1024
|
| 17 |
-
max_samples: 4528
|
| 18 |
-
overwrite_cache: true
|
| 19 |
-
preprocessing_num_workers: 16
|
| 20 |
-
|
| 21 |
-
### output
|
| 22 |
-
output_dir: saves/qwen2-1.5b/lora/sft
|
| 23 |
-
logging_steps: 10
|
| 24 |
-
save_steps: 560
|
| 25 |
-
plot_loss: true
|
| 26 |
-
overwrite_output_dir: true
|
| 27 |
-
|
| 28 |
-
### train
|
| 29 |
-
per_device_train_batch_size: 1
|
| 30 |
-
gradient_accumulation_steps: 8
|
| 31 |
-
learning_rate: 1.0e-4
|
| 32 |
-
num_train_epochs: 6.0
|
| 33 |
-
lr_scheduler_type: cosine
|
| 34 |
-
warmup_ratio: 0.1
|
| 35 |
-
bf16: true
|
| 36 |
-
ddp_timeout: 180000000
|
| 37 |
-
|
| 38 |
-
### eval
|
| 39 |
-
val_size: 0.01
|
| 40 |
-
per_device_eval_batch_size: 1
|
| 41 |
-
eval_strategy: steps
|
| 42 |
-
eval_steps: 560
|
| 43 |
-
|
| 44 |
-
report_to: wandb
|
| 45 |
-
run_name: qwen2_1.5b_lora_sft # optional
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
llama-factory/config/qwen2_7b_lora_sft.yaml
DELETED
|
@@ -1,45 +0,0 @@
|
|
| 1 |
-
### model
|
| 2 |
-
model_name_or_path: Qwen/Qwen2-7B-Instruct
|
| 3 |
-
|
| 4 |
-
### method
|
| 5 |
-
stage: sft
|
| 6 |
-
do_train: true
|
| 7 |
-
finetuning_type: lora
|
| 8 |
-
lora_target: all
|
| 9 |
-
quantization_bit: 4 # use 4-bit QLoRA
|
| 10 |
-
loraplus_lr_ratio: 16.0 # use LoRA+ with lambda=16.0
|
| 11 |
-
# use_unsloth: true # use UnslothAI's LoRA optimization for 2x faster training
|
| 12 |
-
|
| 13 |
-
### dataset
|
| 14 |
-
dataset: alpaca_mac
|
| 15 |
-
template: chatml
|
| 16 |
-
cutoff_len: 1024
|
| 17 |
-
max_samples: 4528
|
| 18 |
-
overwrite_cache: true
|
| 19 |
-
preprocessing_num_workers: 16
|
| 20 |
-
|
| 21 |
-
### output
|
| 22 |
-
output_dir: saves/qwen2-7b/lora/sft
|
| 23 |
-
logging_steps: 10
|
| 24 |
-
save_steps: 560
|
| 25 |
-
plot_loss: true
|
| 26 |
-
overwrite_output_dir: true
|
| 27 |
-
|
| 28 |
-
### train
|
| 29 |
-
per_device_train_batch_size: 1
|
| 30 |
-
gradient_accumulation_steps: 8
|
| 31 |
-
learning_rate: 1.0e-4
|
| 32 |
-
num_train_epochs: 6.0
|
| 33 |
-
lr_scheduler_type: cosine
|
| 34 |
-
warmup_ratio: 0.1
|
| 35 |
-
bf16: true
|
| 36 |
-
ddp_timeout: 180000000
|
| 37 |
-
|
| 38 |
-
### eval
|
| 39 |
-
val_size: 0.01
|
| 40 |
-
per_device_eval_batch_size: 1
|
| 41 |
-
eval_strategy: steps
|
| 42 |
-
eval_steps: 560
|
| 43 |
-
|
| 44 |
-
report_to: wandb
|
| 45 |
-
run_name: qwen2_7b_lora_sft # optional
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
llama-factory/config/qwen2_7b_lora_sft_unsloth.yaml
DELETED
|
@@ -1,45 +0,0 @@
|
|
| 1 |
-
### model
|
| 2 |
-
model_name_or_path: Qwen/Qwen2-7B-Instruct
|
| 3 |
-
|
| 4 |
-
### method
|
| 5 |
-
stage: sft
|
| 6 |
-
do_train: true
|
| 7 |
-
finetuning_type: lora
|
| 8 |
-
lora_target: all
|
| 9 |
-
quantization_bit: 4 # use 4-bit QLoRA
|
| 10 |
-
loraplus_lr_ratio: 16.0 # use LoRA+ with lambda=16.0
|
| 11 |
-
use_unsloth: true # use UnslothAI's LoRA optimization for 2x faster training
|
| 12 |
-
|
| 13 |
-
### dataset
|
| 14 |
-
dataset: alpaca_mac
|
| 15 |
-
template: chatml
|
| 16 |
-
cutoff_len: 1024
|
| 17 |
-
max_samples: 4528
|
| 18 |
-
overwrite_cache: true
|
| 19 |
-
preprocessing_num_workers: 16
|
| 20 |
-
|
| 21 |
-
### output
|
| 22 |
-
output_dir: saves/qwen2-7b/lora/sft
|
| 23 |
-
logging_steps: 10
|
| 24 |
-
save_steps: 560
|
| 25 |
-
plot_loss: true
|
| 26 |
-
overwrite_output_dir: true
|
| 27 |
-
|
| 28 |
-
### train
|
| 29 |
-
per_device_train_batch_size: 1
|
| 30 |
-
gradient_accumulation_steps: 8
|
| 31 |
-
learning_rate: 1.0e-4
|
| 32 |
-
num_train_epochs: 6.0
|
| 33 |
-
lr_scheduler_type: cosine
|
| 34 |
-
warmup_ratio: 0.1
|
| 35 |
-
bf16: true
|
| 36 |
-
ddp_timeout: 180000000
|
| 37 |
-
|
| 38 |
-
### eval
|
| 39 |
-
val_size: 0.01
|
| 40 |
-
per_device_eval_batch_size: 1
|
| 41 |
-
eval_strategy: steps
|
| 42 |
-
eval_steps: 560
|
| 43 |
-
|
| 44 |
-
report_to: wandb
|
| 45 |
-
run_name: qwen2_7b_lora_sft # optional
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
llama-factory/data/alpaca_mac.json
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:6f03e62eb461c2204bbaef55f2de28ec115b1a5834b81f03b10f157551d5fe9f
|
| 3 |
-
size 2240344
|
|
|
|
|
|
|
|
|
|
|
|
llama-factory/data/dataset_info.json
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:84bce610296ed7e729647e85d25576b6226d20ddf0bca4982fb1deb02de35911
|
| 3 |
-
size 13560
|
|
|
|
|
|
|
|
|
|
|
|
llama-factory/inference/qwen2_1.5b_lora_sft.yaml
DELETED
|
@@ -1,4 +0,0 @@
|
|
| 1 |
-
model_name_or_path: Qwen/Qwen2-1.5B-Instruct
|
| 2 |
-
adapter_name_or_path: saves/qwen2-1.5b/lora/sft/checkpoint-1680
|
| 3 |
-
template: chatml
|
| 4 |
-
finetuning_type: lora
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
llm_toolkit/llm_utils.py
CHANGED
|
@@ -1,22 +1,39 @@
|
|
| 1 |
import os
|
| 2 |
import re
|
| 3 |
-
import sys
|
| 4 |
import torch
|
| 5 |
-
from
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
def load_model(
|
| 10 |
model_name,
|
| 11 |
-
max_seq_length=2048,
|
| 12 |
dtype=torch.bfloat16,
|
| 13 |
load_in_4bit=False,
|
| 14 |
adapter_name_or_path=None,
|
|
|
|
| 15 |
):
|
| 16 |
-
print(f"loading model: {model_name}")
|
| 17 |
|
| 18 |
-
if
|
| 19 |
-
|
|
|
|
|
|
|
| 20 |
|
| 21 |
args = dict(
|
| 22 |
model_name_or_path=model_name,
|
|
@@ -26,6 +43,10 @@ def load_model(
|
|
| 26 |
quantization_bit=4 if load_in_4bit else None, # load 4-bit quantized model
|
| 27 |
)
|
| 28 |
chat_model = ChatModel(args)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
return chat_model.engine.model, chat_model.engine.tokenizer
|
| 30 |
|
| 31 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
|
@@ -36,26 +57,59 @@ def load_model(
|
|
| 36 |
bnb_4bit_compute_dtype=dtype,
|
| 37 |
)
|
| 38 |
|
| 39 |
-
model =
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
)
|
| 51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
return model, tokenizer
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
inputs = tokenizer(
|
| 56 |
[prompt],
|
| 57 |
return_tensors="pt",
|
| 58 |
-
).to(
|
| 59 |
|
| 60 |
text_streamer = TextStreamer(tokenizer)
|
| 61 |
|
|
@@ -68,7 +122,10 @@ def extract_answer(text, debug=False):
|
|
| 68 |
if text:
|
| 69 |
# Remove the begin and end tokens
|
| 70 |
text = re.sub(
|
| 71 |
-
r".*?(assistant|\[/INST\]).+?\b",
|
|
|
|
|
|
|
|
|
|
| 72 |
)
|
| 73 |
if debug:
|
| 74 |
print("--------\nstep 1:", text)
|
|
@@ -83,27 +140,63 @@ def extract_answer(text, debug=False):
|
|
| 83 |
if debug:
|
| 84 |
print("--------\nstep 3:", text)
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
return text
|
| 87 |
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
total = len(eval_dataset)
|
| 90 |
predictions = []
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
return predictions
|
| 106 |
|
|
|
|
| 107 |
def save_model(
|
| 108 |
model,
|
| 109 |
tokenizer,
|
|
@@ -163,3 +256,10 @@ def save_model(
|
|
| 163 |
)
|
| 164 |
except Exception as e:
|
| 165 |
print(e)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import re
|
|
|
|
| 3 |
import torch
|
| 4 |
+
from transformers import (
|
| 5 |
+
AutoModelForCausalLM,
|
| 6 |
+
AutoTokenizer,
|
| 7 |
+
BitsAndBytesConfig,
|
| 8 |
+
TextStreamer,
|
| 9 |
+
)
|
| 10 |
+
from tqdm import tqdm
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def get_template(model_name):
|
| 14 |
+
model_name = model_name.lower()
|
| 15 |
+
if "llama" in model_name:
|
| 16 |
+
return "llama3"
|
| 17 |
+
if "internlm" in model_name:
|
| 18 |
+
return "intern2"
|
| 19 |
+
if "glm" in model_name:
|
| 20 |
+
return "glm4"
|
| 21 |
+
return "chatml"
|
| 22 |
|
| 23 |
|
| 24 |
def load_model(
|
| 25 |
model_name,
|
|
|
|
| 26 |
dtype=torch.bfloat16,
|
| 27 |
load_in_4bit=False,
|
| 28 |
adapter_name_or_path=None,
|
| 29 |
+
using_llama_factory=False,
|
| 30 |
):
|
| 31 |
+
print(f"loading model: {model_name} with adapter: {adapter_name_or_path}")
|
| 32 |
|
| 33 |
+
if using_llama_factory:
|
| 34 |
+
from llamafactory.chat import ChatModel
|
| 35 |
+
|
| 36 |
+
template = get_template(model_name)
|
| 37 |
|
| 38 |
args = dict(
|
| 39 |
model_name_or_path=model_name,
|
|
|
|
| 43 |
quantization_bit=4 if load_in_4bit else None, # load 4-bit quantized model
|
| 44 |
)
|
| 45 |
chat_model = ChatModel(args)
|
| 46 |
+
if os.getenv("RESIZE_TOKEN_EMBEDDINGS") == "true":
|
| 47 |
+
chat_model.engine.model.resize_token_embeddings(
|
| 48 |
+
len(chat_model.engine.tokenizer), pad_to_multiple_of=32
|
| 49 |
+
)
|
| 50 |
return chat_model.engine.model, chat_model.engine.tokenizer
|
| 51 |
|
| 52 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
|
|
|
| 57 |
bnb_4bit_compute_dtype=dtype,
|
| 58 |
)
|
| 59 |
|
| 60 |
+
model = (
|
| 61 |
+
AutoModelForCausalLM.from_pretrained(
|
| 62 |
+
model_name,
|
| 63 |
+
quantization_config=bnb_config,
|
| 64 |
+
torch_dtype=dtype,
|
| 65 |
+
trust_remote_code=True,
|
| 66 |
+
device_map="auto",
|
| 67 |
+
)
|
| 68 |
+
if load_in_4bit
|
| 69 |
+
else AutoModelForCausalLM.from_pretrained(
|
| 70 |
+
model_name,
|
| 71 |
+
torch_dtype=dtype,
|
| 72 |
+
trust_remote_code=True,
|
| 73 |
+
device_map="auto",
|
| 74 |
+
)
|
| 75 |
)
|
| 76 |
|
| 77 |
+
if adapter_name_or_path:
|
| 78 |
+
adapter_name = model.load_adapter(adapter_name_or_path)
|
| 79 |
+
model.active_adapters = adapter_name
|
| 80 |
+
|
| 81 |
+
if not tokenizer.pad_token:
|
| 82 |
+
print("Adding pad token to tokenizer for model: ", model_name)
|
| 83 |
+
tokenizer.add_special_tokens({"pad_token": "<pad>"})
|
| 84 |
+
model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=32)
|
| 85 |
+
|
| 86 |
return model, tokenizer
|
| 87 |
|
| 88 |
+
|
| 89 |
+
def check_gpu():
|
| 90 |
+
# torch.cuda.is_available() checks and returns a Boolean True if a GPU is available, else it'll return False
|
| 91 |
+
is_cuda = torch.cuda.is_available()
|
| 92 |
+
|
| 93 |
+
# If we have a GPU available, we'll set our device to GPU. We'll use this device variable later in our code.
|
| 94 |
+
if is_cuda:
|
| 95 |
+
device = torch.device("cuda")
|
| 96 |
+
print("CUDA is available, we have found ", torch.cuda.device_count(), " GPU(s)")
|
| 97 |
+
print(torch.cuda.get_device_name(0))
|
| 98 |
+
print("CUDA version: " + torch.version.cuda)
|
| 99 |
+
elif torch.backends.mps.is_available():
|
| 100 |
+
device = torch.device("mps")
|
| 101 |
+
print("MPS is available")
|
| 102 |
+
else:
|
| 103 |
+
device = torch.device("cpu")
|
| 104 |
+
print("GPU/MPS not available, CPU used")
|
| 105 |
+
return device
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def test_model(model, tokenizer, prompt, device="cuda"):
|
| 109 |
inputs = tokenizer(
|
| 110 |
[prompt],
|
| 111 |
return_tensors="pt",
|
| 112 |
+
).to(device)
|
| 113 |
|
| 114 |
text_streamer = TextStreamer(tokenizer)
|
| 115 |
|
|
|
|
| 122 |
if text:
|
| 123 |
# Remove the begin and end tokens
|
| 124 |
text = re.sub(
|
| 125 |
+
r".*?(assistant|\[/INST\]).+?\b",
|
| 126 |
+
"",
|
| 127 |
+
text,
|
| 128 |
+
flags=re.DOTALL | re.MULTILINE,
|
| 129 |
)
|
| 130 |
if debug:
|
| 131 |
print("--------\nstep 1:", text)
|
|
|
|
| 140 |
if debug:
|
| 141 |
print("--------\nstep 3:", text)
|
| 142 |
|
| 143 |
+
text = text.split("。")[0].strip()
|
| 144 |
+
if debug:
|
| 145 |
+
print("--------\nstep 4:", text)
|
| 146 |
+
|
| 147 |
+
text = re.sub(
|
| 148 |
+
r"^Response:.+?\b",
|
| 149 |
+
"",
|
| 150 |
+
text,
|
| 151 |
+
flags=re.DOTALL | re.MULTILINE,
|
| 152 |
+
)
|
| 153 |
+
if debug:
|
| 154 |
+
print("--------\nstep 5:", text)
|
| 155 |
+
|
| 156 |
return text
|
| 157 |
|
| 158 |
+
|
| 159 |
+
def eval_model(
|
| 160 |
+
model,
|
| 161 |
+
tokenizer,
|
| 162 |
+
eval_dataset,
|
| 163 |
+
device="cuda",
|
| 164 |
+
max_new_tokens=4096,
|
| 165 |
+
repetition_penalty=1.0,
|
| 166 |
+
batch_size=1,
|
| 167 |
+
):
|
| 168 |
total = len(eval_dataset)
|
| 169 |
predictions = []
|
| 170 |
+
|
| 171 |
+
model.eval()
|
| 172 |
+
|
| 173 |
+
with torch.no_grad():
|
| 174 |
+
for i in tqdm(range(0, total, batch_size)): # Iterate in batches
|
| 175 |
+
batch_end = min(i + batch_size, total) # Ensure not to exceed dataset
|
| 176 |
+
batch_prompts = eval_dataset["prompt"][i:batch_end]
|
| 177 |
+
inputs = tokenizer(
|
| 178 |
+
batch_prompts,
|
| 179 |
+
return_tensors="pt",
|
| 180 |
+
padding=True, # Ensure all inputs in the batch have the same length
|
| 181 |
+
).to(device)
|
| 182 |
+
|
| 183 |
+
outputs = model.generate(
|
| 184 |
+
**inputs,
|
| 185 |
+
max_new_tokens=max_new_tokens,
|
| 186 |
+
repetition_penalty=repetition_penalty,
|
| 187 |
+
use_cache=False,
|
| 188 |
+
)
|
| 189 |
+
outputs = outputs[:, inputs["input_ids"].shape[1] :]
|
| 190 |
+
decoded_output = tokenizer.batch_decode(
|
| 191 |
+
outputs, skip_special_tokens=True
|
| 192 |
+
) # Skip special tokens for clean output
|
| 193 |
+
if i == 0:
|
| 194 |
+
print("Batch output:", decoded_output)
|
| 195 |
+
predictions.extend(decoded_output)
|
| 196 |
|
| 197 |
return predictions
|
| 198 |
|
| 199 |
+
|
| 200 |
def save_model(
|
| 201 |
model,
|
| 202 |
tokenizer,
|
|
|
|
| 256 |
)
|
| 257 |
except Exception as e:
|
| 258 |
print(e)
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
def print_row_details(df, indices=[0]):
|
| 262 |
+
for index in indices:
|
| 263 |
+
for col in df.columns:
|
| 264 |
+
print("-" * 50)
|
| 265 |
+
print(f"{col}: {df[col].iloc[index]}")
|
requirements.txt
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
nltk==3.8.1
|
| 2 |
python-dotenv==1.0.1
|
| 3 |
black==24.4.0
|
|
@@ -9,7 +10,10 @@ scikit-learn==1.5.0
|
|
| 9 |
jupyter
|
| 10 |
ipywidgets
|
| 11 |
packaging
|
| 12 |
-
# triton
|
| 13 |
-
# xformers
|
| 14 |
langchain_openai==0.1.13
|
| 15 |
-
wandb==0.17.4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
huggingface_hub==0.24.2
|
| 2 |
nltk==3.8.1
|
| 3 |
python-dotenv==1.0.1
|
| 4 |
black==24.4.0
|
|
|
|
| 10 |
jupyter
|
| 11 |
ipywidgets
|
| 12 |
packaging
|
|
|
|
|
|
|
| 13 |
langchain_openai==0.1.13
|
| 14 |
+
wandb==0.17.4
|
| 15 |
+
transformers==4.43.3
|
| 16 |
+
sentencepiece==0.2.0
|
| 17 |
+
einops==0.8.0
|
| 18 |
+
accelerate==0.32.1
|
| 19 |
+
peft==0.11.1
|
scripts/lf-api.sh
DELETED
|
@@ -1,8 +0,0 @@
|
|
| 1 |
-
#!/bin/sh
|
| 2 |
-
|
| 3 |
-
BASEDIR=$(dirname "$0")
|
| 4 |
-
cd $BASEDIR/../llama-factory
|
| 5 |
-
echo Current Directory:
|
| 6 |
-
pwd
|
| 7 |
-
|
| 8 |
-
API_PORT=8000 llamafactory-cli api $1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/tune-large.sh
DELETED
|
@@ -1,24 +0,0 @@
|
|
| 1 |
-
#!/bin/sh
|
| 2 |
-
|
| 3 |
-
BASEDIR=$(dirname "$0")
|
| 4 |
-
cd $BASEDIR
|
| 5 |
-
echo Current Directory:
|
| 6 |
-
pwd
|
| 7 |
-
|
| 8 |
-
nvidia-smi
|
| 9 |
-
uname -a
|
| 10 |
-
cat /etc/os-release
|
| 11 |
-
lscpu
|
| 12 |
-
grep MemTotal /proc/meminfo
|
| 13 |
-
|
| 14 |
-
# pip install -r requirements.txt
|
| 15 |
-
# FLASH_ATTENTION_FORCE_BUILD=TRUE pip install --upgrade flash-attn
|
| 16 |
-
|
| 17 |
-
# export MODEL_NAME=unsloth/Qwen2-72B-Instruct-bnb-4bit
|
| 18 |
-
# echo Tuning $MODEL_NAME
|
| 19 |
-
# python tune.py
|
| 20 |
-
|
| 21 |
-
export MODEL_NAME=unsloth/llama-3-70b-Instruct-bnb-4bit
|
| 22 |
-
echo Tuning $MODEL_NAME
|
| 23 |
-
python tune.py
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/tune-lf.sh
DELETED
|
@@ -1,9 +0,0 @@
|
|
| 1 |
-
#!/bin/sh
|
| 2 |
-
|
| 3 |
-
BASEDIR=$(dirname "$0")
|
| 4 |
-
cd $BASEDIR/../llama-factory
|
| 5 |
-
echo Current Directory:
|
| 6 |
-
pwd
|
| 7 |
-
|
| 8 |
-
YAML=$1 python -c 'import os, json, sys, yaml; filename=os.getenv("YAML"); y=yaml.safe_load(open(filename)) ; print(f"{filename}:\n", json.dumps(y, indent=2))'
|
| 9 |
-
llamafactory-cli train $1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/tune-medium.sh
DELETED
|
@@ -1,27 +0,0 @@
|
|
| 1 |
-
#!/bin/sh
|
| 2 |
-
|
| 3 |
-
BASEDIR=$(dirname "$0")
|
| 4 |
-
cd $BASEDIR
|
| 5 |
-
echo Current Directory:
|
| 6 |
-
pwd
|
| 7 |
-
|
| 8 |
-
nvidia-smi
|
| 9 |
-
uname -a
|
| 10 |
-
cat /etc/os-release
|
| 11 |
-
lscpu
|
| 12 |
-
grep MemTotal /proc/meminfo
|
| 13 |
-
|
| 14 |
-
# pip install -r requirements.txt
|
| 15 |
-
# FLASH_ATTENTION_FORCE_BUILD=TRUE pip install --upgrade flash-attn
|
| 16 |
-
|
| 17 |
-
export MODEL_NAME=unsloth/Qwen2-7B-Instruct
|
| 18 |
-
echo Tuning $MODEL_NAME
|
| 19 |
-
python llm_toolkit/tune.py
|
| 20 |
-
|
| 21 |
-
export MODEL_NAME=unsloth/mistral-7b-instruct-v0.3
|
| 22 |
-
echo Tuning $MODEL_NAME
|
| 23 |
-
python llm_toolkit/tune.py
|
| 24 |
-
|
| 25 |
-
export MODEL_NAME=gradientai/Llama-3-8B-Instruct-Gradient-1048k
|
| 26 |
-
echo Tuning $MODEL_NAME
|
| 27 |
-
python llm_toolkit/tune.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/tune-small-2.sh
DELETED
|
@@ -1,14 +0,0 @@
|
|
| 1 |
-
#!/bin/sh
|
| 2 |
-
|
| 3 |
-
BASEDIR=$(dirname "$0")
|
| 4 |
-
cd $BASEDIR/..
|
| 5 |
-
echo Current Directory:
|
| 6 |
-
pwd
|
| 7 |
-
|
| 8 |
-
export MODEL_NAME=unsloth/Qwen2-0.5B-Instruct
|
| 9 |
-
echo Tuning $MODEL_NAME
|
| 10 |
-
python llm_toolkit/tune.py
|
| 11 |
-
|
| 12 |
-
export MODEL_NAME=unsloth/Qwen2-1.5B-Instruct
|
| 13 |
-
echo Tuning $MODEL_NAME
|
| 14 |
-
python llm_toolkit/tune.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/tune-small.sh
DELETED
|
@@ -1,14 +0,0 @@
|
|
| 1 |
-
#!/bin/sh
|
| 2 |
-
|
| 3 |
-
BASEDIR=$(dirname "$0")
|
| 4 |
-
cd $BASEDIR/..
|
| 5 |
-
echo Current Directory:
|
| 6 |
-
pwd
|
| 7 |
-
|
| 8 |
-
export MODEL_NAME=unsloth/Qwen2-0.5B-Instruct-bnb-4bit
|
| 9 |
-
echo Tuning $MODEL_NAME
|
| 10 |
-
python llm_toolkit/tune.py
|
| 11 |
-
|
| 12 |
-
export MODEL_NAME=unsloth/Qwen2-1.5B-Instruct-bnb-4bit
|
| 13 |
-
echo Tuning $MODEL_NAME
|
| 14 |
-
python llm_toolkit/tune.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|