Spaces:
Running
on
Zero
Running
on
Zero
| import json | |
| from typing import Union, Dict, Any | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import tqdm | |
| from peft import PeftConfig, LoraModel, load_peft_weights, set_peft_model_state_dict | |
| from transformers import LlamaModel, LlamaConfig, DynamicCache, PretrainedConfig, PreTrainedModel | |
| from midi_tokenizer import MIDITokenizerV1, MIDITokenizerV2, MIDITokenizer | |
| config_name_list = ["tv1-medium", "tv2-medium", "tv2o-medium", "tv2-large", "tv2o-large"] | |
| class MIDIModelConfig(PretrainedConfig): | |
| model_type = "midi_model" | |
| def __init__(self, | |
| tokenizer: Union[MIDITokenizerV1, MIDITokenizerV2, Dict]=None, | |
| net_config: Union[LlamaConfig, Dict]=None, | |
| net_token_config: Union[LlamaConfig, Dict]=None, | |
| **kwargs): | |
| super().__init__(**kwargs) | |
| if tokenizer: | |
| if isinstance(tokenizer, dict): | |
| self.tokenizer = MIDITokenizer(tokenizer["version"]) | |
| self.tokenizer.set_optimise_midi(tokenizer["optimise_midi"]) | |
| else: | |
| self.tokenizer = tokenizer | |
| else: | |
| self.tokenizer = MIDITokenizer() | |
| if net_config: | |
| if isinstance(net_config, dict): | |
| self.net_config = LlamaConfig(**net_config) | |
| else: | |
| self.net_config = net_config | |
| else: | |
| self.net_config = LlamaConfig() | |
| if net_token_config: | |
| if isinstance(net_token_config, dict): | |
| self.net_token_config = LlamaConfig(**net_token_config) | |
| else: | |
| self.net_token_config = net_token_config | |
| else: | |
| self.net_token_config = LlamaConfig() | |
| self.n_embd = self.net_token_config.hidden_size | |
| def to_dict(self) -> Dict[str, Any]: | |
| d = super().to_dict() | |
| d["tokenizer"] = self.tokenizer.to_dict() | |
| return d | |
| def __str__(self): | |
| d = { | |
| "net": self.net_config.to_json_string(use_diff=False), | |
| "net_token": self.net_token_config.to_json_string(use_diff=False) | |
| } | |
| return json.dumps(d, indent=4) | |
| def get_config(tokenizer_ver="v2", optimise_midi=True, n_layer=12, n_head=16, n_embd=1024, n_inner=4096): | |
| tokenizer = MIDITokenizer(tokenizer_ver) | |
| tokenizer.set_optimise_midi(optimise_midi) | |
| net_config = LlamaConfig(vocab_size=tokenizer.vocab_size, | |
| hidden_size=n_embd, num_attention_heads=n_head, | |
| num_hidden_layers=n_layer, intermediate_size=n_inner, | |
| pad_token_id=tokenizer.pad_id, max_position_embeddings=4096, | |
| use_cache=False) | |
| net_token_config = LlamaConfig(vocab_size=tokenizer.vocab_size, | |
| hidden_size=n_embd, num_attention_heads=n_head // 4, | |
| num_hidden_layers=n_layer // 4, intermediate_size=n_inner // 4, | |
| pad_token_id=tokenizer.pad_id, max_position_embeddings=4096, | |
| use_cache=False) | |
| return MIDIModelConfig(tokenizer, net_config, net_token_config) | |
| def from_name(name="tv2o-medium"): | |
| tv, size = name.split("-") | |
| tv = tv[1:] | |
| if tv[-1] == "o": | |
| o = True | |
| tv = tv[:-1] | |
| else: | |
| o = False | |
| if tv not in ["v1", "v2"]: | |
| raise ValueError(f"Unknown tokenizer version {tv}") | |
| if size == "medium": | |
| return MIDIModelConfig.get_config(tokenizer_ver=tv, optimise_midi=o, | |
| n_layer=12, n_head=16, n_embd=1024, n_inner=4096) | |
| elif size == "large": | |
| return MIDIModelConfig.get_config(tokenizer_ver=tv, optimise_midi=o, | |
| n_layer=24, n_head=16, n_embd=1024, n_inner=4096) | |
| else: | |
| raise ValueError(f"Unknown model size {size}") | |
| class MIDIModel(PreTrainedModel): | |
| config_class = MIDIModelConfig | |
| def __init__(self, config: MIDIModelConfig, *args, **kwargs): | |
| super(MIDIModel, self).__init__(config, *args, **kwargs) | |
| self.tokenizer = config.tokenizer | |
| self.net = LlamaModel(config.net_config) | |
| self.net_token = LlamaModel(config.net_token_config) | |
| self.lm_head = nn.Linear(config.n_embd, self.tokenizer.vocab_size, bias=False) | |
| def load_merge_lora(self, model_id): | |
| peft_config = PeftConfig.from_pretrained(model_id) | |
| model = LoraModel(self, peft_config, adapter_name="default") | |
| adapter_state_dict = load_peft_weights(model_id, device=str(self.device)) | |
| set_peft_model_state_dict(self, adapter_state_dict, "default") | |
| return model.merge_and_unload() | |
| def forward_token(self, hidden_state=None, x=None, cache=None): | |
| """ | |
| :param hidden_state: (batch_size, n_embd) | |
| :param x: (batch_size, token_sequence_length) | |
| :param cache: Cache | |
| :return: (batch_size, 1 + token_sequence_length, vocab_size) | |
| """ | |
| if hidden_state is not None: | |
| #if you use cache, you don't need to pass in hidden_state | |
| hidden_state = hidden_state.unsqueeze(1) # (batch_size, 1, n_embd) | |
| if x is not None: | |
| x = self.net_token.embed_tokens(x) | |
| if hidden_state is not None: | |
| x = torch.cat([hidden_state, x], dim=1) | |
| hidden_state = x | |
| hidden_state = self.net_token.forward(inputs_embeds=hidden_state, | |
| past_key_values=cache, | |
| use_cache=cache is not None).last_hidden_state | |
| return self.lm_head(hidden_state) | |
| def forward(self, x, cache = None): | |
| """ | |
| :param x: (batch_size, midi_sequence_length, token_sequence_length) | |
| :param cache: Cache | |
| :return: hidden (batch_size, midi_sequence_length, n_embd) | |
| """ | |
| # merge token sequence | |
| x = self.net.embed_tokens(x) | |
| x = x.sum(dim=-2) | |
| x = self.net.forward(inputs_embeds=x, | |
| past_key_values=cache, | |
| use_cache=cache is not None) | |
| return x.last_hidden_state | |
| def sample_top_p_k(self, probs, p, k, generator=None): | |
| probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) | |
| probs_sum = torch.cumsum(probs_sort, dim=-1) | |
| mask = probs_sum - probs_sort > p | |
| probs_sort[mask] = 0.0 | |
| mask = torch.zeros(probs_sort.shape[-1], device=probs_sort.device) | |
| mask[:k] = 1 | |
| probs_sort = probs_sort * mask | |
| probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) | |
| shape = probs_sort.shape | |
| next_token = torch.multinomial(probs_sort.reshape(-1, shape[-1]), | |
| num_samples=1, generator=generator).reshape(*shape[:-1], 1) | |
| next_token = torch.gather(probs_idx, -1, next_token).reshape(*shape[:-1]) | |
| return next_token | |
| def generate(self, prompt=None, batch_size=1, max_len=512, temp=1.0, top_p=0.98, top_k=20, generator=None): | |
| tokenizer = self.tokenizer | |
| max_token_seq = tokenizer.max_token_seq | |
| if prompt is None: | |
| input_tensor = torch.full((1, max_token_seq), tokenizer.pad_id, dtype=torch.long, device=self.device) | |
| input_tensor[0, 0] = tokenizer.bos_id # bos | |
| input_tensor = input_tensor.unsqueeze(0) | |
| input_tensor = torch.cat([input_tensor] * batch_size, dim=0) | |
| else: | |
| if len(prompt.shape) == 2: | |
| prompt = prompt[None, :] | |
| prompt = np.repeat(prompt, repeats=batch_size, axis=0) | |
| elif prompt.shape[0] == 1: | |
| prompt = np.repeat(prompt, repeats=batch_size, axis=0) | |
| elif len(prompt.shape) != 3 or prompt.shape[0] != batch_size: | |
| raise ValueError(f"invalid shape for prompt, {prompt.shape}") | |
| prompt = prompt[..., :max_token_seq] | |
| if prompt.shape[-1] < max_token_seq: | |
| prompt = np.pad(prompt, ((0, 0), (0, 0), (0, max_token_seq - prompt.shape[-1])), | |
| mode="constant", constant_values=tokenizer.pad_id) | |
| input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=self.device) | |
| cur_len = input_tensor.shape[1] | |
| bar = tqdm.tqdm(desc="generating", total=max_len - cur_len) | |
| cache1 = DynamicCache() | |
| past_len = 0 | |
| with bar: | |
| while cur_len < max_len: | |
| end = [False] * batch_size | |
| hidden = self.forward(input_tensor[:, past_len:], cache=cache1)[:, -1] | |
| next_token_seq = None | |
| event_names = [""] * batch_size | |
| cache2 = DynamicCache() | |
| for i in range(max_token_seq): | |
| mask = torch.zeros((batch_size, tokenizer.vocab_size), dtype=torch.int64, device=self.device) | |
| for b in range(batch_size): | |
| if end[b]: | |
| mask[b, tokenizer.pad_id] = 1 | |
| continue | |
| if i == 0: | |
| mask[b, list(tokenizer.event_ids.values()) + [tokenizer.eos_id]] = 1 | |
| else: | |
| param_names = tokenizer.events[event_names[b]] | |
| if i > len(param_names): | |
| mask[b, tokenizer.pad_id] = 1 | |
| continue | |
| mask[b, tokenizer.parameter_ids[param_names[i - 1]]] = 1 | |
| mask = mask.unsqueeze(1) | |
| x = next_token_seq | |
| if i != 0: | |
| # cached | |
| hidden = None | |
| x = x[:, -1:] | |
| logits = self.forward_token(hidden, x, cache=cache2)[:, -1:] | |
| scores = torch.softmax(logits / temp, dim=-1) * mask | |
| samples = self.sample_top_p_k(scores, top_p, top_k, generator=generator) | |
| if i == 0: | |
| next_token_seq = samples | |
| for b in range(batch_size): | |
| if end[b]: | |
| continue | |
| eid = samples[b].item() | |
| if eid == tokenizer.eos_id: | |
| end[b] = True | |
| else: | |
| event_names[b] = tokenizer.id_events[eid] | |
| else: | |
| next_token_seq = torch.cat([next_token_seq, samples], dim=1) | |
| if all([len(tokenizer.events[event_names[b]]) == i for b in range(batch_size) if not end[b]]): | |
| break | |
| if next_token_seq.shape[1] < max_token_seq: | |
| next_token_seq = F.pad(next_token_seq, (0, max_token_seq - next_token_seq.shape[1]), | |
| "constant", value=tokenizer.pad_id) | |
| next_token_seq = next_token_seq.unsqueeze(1) | |
| input_tensor = torch.cat([input_tensor, next_token_seq], dim=1) | |
| past_len = cur_len | |
| cur_len += 1 | |
| bar.update(1) | |
| if all(end): | |
| break | |
| return input_tensor.cpu().numpy() | |