Spaces:
Sleeping
Sleeping
| import argparse | |
| import glob | |
| import PIL | |
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| import tqdm | |
| import MIDI | |
| from midi_model import MIDIModel | |
| from midi_tokenizer import MIDITokenizer | |
| from midi_synthesizer import synthesis | |
| from huggingface_hub import hf_hub_download | |
| def generate(prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20, | |
| disable_patch_change=False, disable_control_change=False, disable_channels=None, amp=True): | |
| if disable_channels is not None: | |
| disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels] | |
| else: | |
| disable_channels = [] | |
| max_token_seq = tokenizer.max_token_seq | |
| if prompt is None: | |
| input_tensor = torch.full((1, max_token_seq), tokenizer.pad_id, dtype=torch.long, device=model.device) | |
| input_tensor[0, 0] = tokenizer.bos_id # bos | |
| else: | |
| prompt = prompt[:, :max_token_seq] | |
| if prompt.shape[-1] < max_token_seq: | |
| prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])), | |
| mode="constant", constant_values=tokenizer.pad_id) | |
| input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=model.device) | |
| input_tensor = input_tensor.unsqueeze(0) | |
| cur_len = input_tensor.shape[1] | |
| bar = tqdm.tqdm(desc="generating", total=max_len - cur_len) | |
| with bar, torch.cuda.amp.autocast(enabled=amp): | |
| while cur_len < max_len: | |
| end = False | |
| hidden = model.forward(input_tensor)[0, -1].unsqueeze(0) | |
| next_token_seq = None | |
| event_name = "" | |
| for i in range(max_token_seq): | |
| mask = torch.zeros(tokenizer.vocab_size, dtype=torch.int64, device=model.device) | |
| if i == 0: | |
| mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id] | |
| if disable_patch_change: | |
| mask_ids.remove(tokenizer.event_ids["patch_change"]) | |
| if disable_control_change: | |
| mask_ids.remove(tokenizer.event_ids["control_change"]) | |
| mask[mask_ids] = 1 | |
| else: | |
| param_name = tokenizer.events[event_name][i - 1] | |
| mask_ids = tokenizer.parameter_ids[param_name] | |
| if param_name == "channel": | |
| mask_ids = [i for i in mask_ids if i not in disable_channels] | |
| mask[mask_ids] = 1 | |
| logits = model.forward_token(hidden, next_token_seq)[:, -1:] | |
| scores = torch.softmax(logits / temp, dim=-1) * mask | |
| sample = model.sample_top_p_k(scores, top_p, top_k) | |
| if i == 0: | |
| next_token_seq = sample | |
| eid = sample.item() | |
| if eid == tokenizer.eos_id: | |
| end = True | |
| break | |
| event_name = tokenizer.id_events[eid] | |
| else: | |
| next_token_seq = torch.cat([next_token_seq, sample], dim=1) | |
| if len(tokenizer.events[event_name]) == i: | |
| break | |
| if next_token_seq.shape[1] < max_token_seq: | |
| next_token_seq = F.pad(next_token_seq, (0, max_token_seq - next_token_seq.shape[1]), | |
| "constant", value=tokenizer.pad_id) | |
| next_token_seq = next_token_seq.unsqueeze(1) | |
| input_tensor = torch.cat([input_tensor, next_token_seq], dim=1) | |
| cur_len += 1 | |
| bar.update(1) | |
| yield next_token_seq.reshape(-1).cpu().numpy() | |
| if end: | |
| break | |
| def run(tab, instruments, drum_kit, mid, midi_events, gen_events, temp, top_p, top_k, allow_cc, amp): | |
| mid_seq = [] | |
| max_len = int(gen_events) | |
| img_len = 1024 | |
| img = np.full((128 * 2, img_len, 3), 255, dtype=np.uint8) | |
| state = {"t1": 0, "t": 0, "cur_pos": 0} | |
| rand = np.random.RandomState(0) | |
| colors = {(i, j): rand.randint(0, 200, 3) for i in range(128) for j in range(16)} | |
| def draw_event(tokens): | |
| if tokens[0] in tokenizer.id_events: | |
| name = tokenizer.id_events[tokens[0]] | |
| if len(tokens) <= len(tokenizer.events[name]): | |
| return | |
| params = tokens[1:] | |
| params = [params[i] - tokenizer.parameter_ids[p][0] for i, p in enumerate(tokenizer.events[name])] | |
| if not all([0 <= params[i] < tokenizer.event_parameters[p] for i, p in enumerate(tokenizer.events[name])]): | |
| return | |
| event = [name] + params | |
| state["t1"] += event[1] | |
| t = state["t1"] * 16 + event[2] | |
| state["t"] = t | |
| if name == "note": | |
| tr, d, c, p = event[3:7] | |
| shift = t + d - (state["cur_pos"] + img_len) | |
| if shift > 0: | |
| img[:, :-shift] = img[:, shift:] | |
| img[:, -shift:] = 255 | |
| state["cur_pos"] += shift | |
| t = t - state["cur_pos"] | |
| img[p * 2:(p + 1) * 2, t: t + d] = colors[(tr, c)] | |
| def get_img(): | |
| t = state["t"] - state["cur_pos"] | |
| img_new = img.copy() | |
| img_new[:, t: t + 2] = 0 | |
| return PIL.Image.fromarray(np.flip(img_new, 0)) | |
| disable_patch_change = False | |
| disable_channels = None | |
| if tab == 0: | |
| i = 0 | |
| mid = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)] | |
| patches = {} | |
| for instr in instruments: | |
| patches[i] = patch2number[instr] | |
| i = (i + 1) if i != 9 else 10 | |
| if drum_kit != "None": | |
| patches[9] = drum_kits2number[drum_kit] | |
| for i, (c, p) in enumerate(patches.items()): | |
| mid.append(tokenizer.event2tokens(["patch_change", 0, 0, i, c, p])) | |
| mid_seq = mid | |
| mid = np.asarray(mid, dtype=np.int64) | |
| if len(instruments) > 0 or drum_kit != "None": | |
| disable_patch_change = True | |
| disable_channels = [i for i in range(16) if i not in patches] | |
| elif mid is not None: | |
| mid = tokenizer.tokenize(MIDI.midi2score(mid)) | |
| mid = np.asarray(mid, dtype=np.int64) | |
| mid = mid[:int(midi_events)] | |
| max_len += len(mid) | |
| for token_seq in mid: | |
| mid_seq.append(token_seq) | |
| draw_event(token_seq) | |
| generator = generate(mid, max_len=max_len, temp=temp, top_p=top_p, top_k=top_k, | |
| disable_patch_change=disable_patch_change, disable_control_change=not allow_cc, | |
| disable_channels=disable_channels, amp=amp) | |
| for token_seq in generator: | |
| mid_seq.append(token_seq) | |
| draw_event(token_seq) | |
| yield mid_seq, get_img(), None, None | |
| mid = tokenizer.detokenize(mid_seq) | |
| with open(f"output.mid", 'wb') as f: | |
| f.write(MIDI.score2midi(mid)) | |
| audio = synthesis(MIDI.score2opus(mid), soundfont_path) | |
| yield mid_seq, get_img(), "output.mid", (44100, audio) | |
| def cancel_run(mid_seq): | |
| if mid_seq is None: | |
| return None, None | |
| mid = tokenizer.detokenize(mid_seq) | |
| with open(f"output.mid", 'wb') as f: | |
| f.write(MIDI.score2midi(mid)) | |
| audio = synthesis(MIDI.score2opus(mid), soundfont_path) | |
| return "output.mid", (44100, audio) | |
| number2drum_kits = {-1: "None", 0: "Standard", 8: "Room", 16: "Power", 24: "Electric", 25: "TR-808", 32: "Jazz", | |
| 40: "Blush", 48: "Orchestra"} | |
| patch2number = {v: k for k, v in MIDI.Number2patch.items()} | |
| drum_kits2number = {v: k for k, v in number2drum_kits.items()} | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--share", action="store_true", default=False, help="share gradio app") | |
| parser.add_argument("--port", type=int, default=7860, help="gradio server port") | |
| parser.add_argument("--device", type=str, default="cpu", help="device to run model") | |
| parser.add_argument("--max-gen", type=int, default=512, help="max") | |
| soundfont_path = hf_hub_download(repo_id="skytnt/midi-model", filename="soundfont.sf2") | |
| model_path = hf_hub_download(repo_id="skytnt/midi-model", filename="model.ckpt") | |
| opt = parser.parse_args() | |
| tokenizer = MIDITokenizer() | |
| model = MIDIModel(tokenizer).to(device=opt.device) | |
| ckpt = torch.load(model_path, map_location="cpu") | |
| state_dict = ckpt.get("state_dict", ckpt) | |
| model.load_state_dict(state_dict, strict=False) | |
| model.eval() | |
| app = gr.Blocks() | |
| with app: | |
| gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Midi Composer</h1>") | |
| gr.Markdown("\n\n" | |
| "Midi event transformer for music generation\n\n" | |
| "Demo for [SkyTNT/midi-model](https://github.com/SkyTNT/midi-model)\n\n" | |
| "[Open In Colab]" | |
| "(https://colab.research.google.com/github/SkyTNT/midi-model/blob/main/demo.ipynb)" | |
| " for faster running") | |
| tab_select = gr.Variable(value=0) | |
| with gr.Tabs(): | |
| with gr.TabItem("instrument prompt") as tab1: | |
| input_instruments = gr.Dropdown(label="instruments (auto if empty)", choices=list(patch2number.keys()), | |
| multiselect=True, max_choices=10, type="value") | |
| input_drum_kit = gr.Dropdown(label="drum kit", choices=list(drum_kits2number.keys()), type="value", | |
| value="None") | |
| with gr.TabItem("midi prompt") as tab2: | |
| input_midi = gr.File(label="input midi", file_types=[".midi", ".mid"], type="binary") | |
| input_midi_events = gr.Slider(label="use first n midi events as prompt", minimum=1, maximum=512, | |
| step=1, | |
| value=128) | |
| tab1.select(lambda: 0, None, tab_select, queue=False) | |
| tab2.select(lambda: 1, None, tab_select, queue=False) | |
| input_gen_events = gr.Slider(label="generate n midi events", minimum=1, maximum=opt.max_gen, | |
| step=1, value=opt.max_gen) | |
| input_temp = gr.Slider(label="temperature", minimum=0.1, maximum=1.2, step=0.01, value=1) | |
| input_top_p = gr.Slider(label="top p", minimum=0.1, maximum=1, step=0.01, value=0.97) | |
| input_top_k = gr.Slider(label="top k", minimum=1, maximum=50, step=1, value=20) | |
| input_allow_cc = gr.Checkbox(label="allow control change event", value=True) | |
| input_amp = gr.Checkbox(label="enable amp", value=True) | |
| run_btn = gr.Button("generate", variant="primary") | |
| stop_btn = gr.Button("stop") | |
| output_midi_seq = gr.Variable() | |
| output_midi_img = gr.Image(label="output image") | |
| output_midi = gr.File(label="output midi", file_types=[".mid"]) | |
| output_audio = gr.Audio(label="output audio", format="mp3") | |
| run_event = run_btn.click(run, [tab_select, input_instruments, input_drum_kit, input_midi, input_midi_events, | |
| input_gen_events, input_temp, input_top_p, input_top_k, | |
| input_allow_cc, input_amp], | |
| [output_midi_seq, output_midi_img, output_midi, output_audio]) | |
| stop_btn.click(cancel_run, output_midi_seq, [output_midi, output_audio], cancels=run_event, queue=False) | |
| app.queue(1).launch(server_port=opt.port, share=opt.share) | |