Spaces:
Sleeping
Sleeping
torch
Browse files- app.py +58 -92
- midi_model.py +56 -16
- requirements.txt +3 -1
app.py
CHANGED
|
@@ -1,79 +1,53 @@
|
|
| 1 |
import argparse
|
| 2 |
import glob
|
| 3 |
import json
|
| 4 |
-
import os
|
| 5 |
import time
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
import numpy as np
|
| 9 |
-
import
|
|
|
|
| 10 |
import tqdm
|
| 11 |
from huggingface_hub import hf_hub_download
|
| 12 |
|
| 13 |
import MIDI
|
|
|
|
| 14 |
from midi_synthesizer import MidiSynthesizer
|
| 15 |
-
from midi_tokenizer import MIDITokenizer
|
| 16 |
|
| 17 |
MAX_SEED = np.iinfo(np.int32).max
|
| 18 |
in_space = os.getenv("SYSTEM") == "spaces"
|
| 19 |
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
exp_x_shifted = np.exp(x - x_max)
|
| 24 |
-
return exp_x_shifted / np.sum(exp_x_shifted, axis=axis, keepdims=True)
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
def sample_top_p_k(probs, p, k, generator=None):
|
| 28 |
-
if generator is None:
|
| 29 |
-
generator = np.random
|
| 30 |
-
probs_idx = np.argsort(-probs, axis=-1)
|
| 31 |
-
probs_sort = np.take_along_axis(probs, probs_idx, -1)
|
| 32 |
-
probs_sum = np.cumsum(probs_sort, axis=-1)
|
| 33 |
-
mask = probs_sum - probs_sort > p
|
| 34 |
-
probs_sort[mask] = 0.0
|
| 35 |
-
mask = np.zeros(probs_sort.shape[-1])
|
| 36 |
-
mask[:k] = 1
|
| 37 |
-
probs_sort = probs_sort * mask
|
| 38 |
-
probs_sort /= np.sum(probs_sort, axis=-1, keepdims=True)
|
| 39 |
-
shape = probs_sort.shape
|
| 40 |
-
probs_sort_flat = probs_sort.reshape(-1, shape[-1])
|
| 41 |
-
probs_idx_flat = probs_idx.reshape(-1, shape[-1])
|
| 42 |
-
next_token = np.stack([generator.choice(idxs, p=pvals) for pvals, idxs in zip(probs_sort_flat, probs_idx_flat)])
|
| 43 |
-
next_token = next_token.reshape(*shape[:-1])
|
| 44 |
-
return next_token
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
def generate(model, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
|
| 48 |
disable_patch_change=False, disable_control_change=False, disable_channels=None, generator=None):
|
| 49 |
-
tokenizer = model
|
| 50 |
if disable_channels is not None:
|
| 51 |
disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels]
|
| 52 |
else:
|
| 53 |
disable_channels = []
|
| 54 |
-
if generator is None:
|
| 55 |
-
generator = np.random
|
| 56 |
max_token_seq = tokenizer.max_token_seq
|
| 57 |
if prompt is None:
|
| 58 |
-
input_tensor =
|
| 59 |
input_tensor[0, 0] = tokenizer.bos_id # bos
|
| 60 |
else:
|
| 61 |
prompt = prompt[:, :max_token_seq]
|
| 62 |
if prompt.shape[-1] < max_token_seq:
|
| 63 |
prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])),
|
| 64 |
mode="constant", constant_values=tokenizer.pad_id)
|
| 65 |
-
input_tensor = prompt
|
| 66 |
-
input_tensor = input_tensor
|
| 67 |
cur_len = input_tensor.shape[1]
|
| 68 |
-
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len
|
| 69 |
with bar:
|
| 70 |
while cur_len < max_len:
|
| 71 |
end = False
|
| 72 |
-
hidden = model
|
| 73 |
-
next_token_seq =
|
| 74 |
event_name = ""
|
| 75 |
for i in range(max_token_seq):
|
| 76 |
-
mask =
|
| 77 |
if i == 0:
|
| 78 |
mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id]
|
| 79 |
if disable_patch_change:
|
|
@@ -87,9 +61,9 @@ def generate(model, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
|
|
| 87 |
if param_name == "channel":
|
| 88 |
mask_ids = [i for i in mask_ids if i not in disable_channels]
|
| 89 |
mask[mask_ids] = 1
|
| 90 |
-
logits = model
|
| 91 |
-
scores = softmax(logits / temp,
|
| 92 |
-
sample = sample_top_p_k(scores, top_p, top_k, generator)
|
| 93 |
if i == 0:
|
| 94 |
next_token_seq = sample
|
| 95 |
eid = sample.item()
|
|
@@ -98,17 +72,17 @@ def generate(model, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
|
|
| 98 |
break
|
| 99 |
event_name = tokenizer.id_events[eid]
|
| 100 |
else:
|
| 101 |
-
next_token_seq =
|
| 102 |
if len(tokenizer.events[event_name]) == i:
|
| 103 |
break
|
| 104 |
if next_token_seq.shape[1] < max_token_seq:
|
| 105 |
-
next_token_seq =
|
| 106 |
-
|
| 107 |
-
next_token_seq = next_token_seq
|
| 108 |
-
input_tensor =
|
| 109 |
cur_len += 1
|
| 110 |
bar.update(1)
|
| 111 |
-
yield next_token_seq.reshape(-1)
|
| 112 |
if end:
|
| 113 |
break
|
| 114 |
|
|
@@ -125,7 +99,7 @@ def run(model_name, tab, mid_seq, continuation_state, instruments, drum_kit, bpm
|
|
| 125 |
reduce_cc_st, remap_track_channel, add_default_instr, remove_empty_channels, seed, seed_rand,
|
| 126 |
gen_events, temp, top_p, top_k, allow_cc):
|
| 127 |
model = models[model_name]
|
| 128 |
-
tokenizer = model
|
| 129 |
bpm = int(bpm)
|
| 130 |
if time_sig == "auto":
|
| 131 |
time_sig = None
|
|
@@ -147,7 +121,7 @@ def run(model_name, tab, mid_seq, continuation_state, instruments, drum_kit, bpm
|
|
| 147 |
max_len = gen_events
|
| 148 |
if seed_rand:
|
| 149 |
seed = np.random.randint(0, MAX_SEED)
|
| 150 |
-
generator =
|
| 151 |
disable_patch_change = False
|
| 152 |
disable_channels = None
|
| 153 |
if tab == 0:
|
|
@@ -203,22 +177,24 @@ def run(model_name, tab, mid_seq, continuation_state, instruments, drum_kit, bpm
|
|
| 203 |
init_msgs += [create_msg("visualizer_clear", tokenizer.version),
|
| 204 |
create_msg("visualizer_append", events)]
|
| 205 |
yield mid_seq, continuation_state, None, None, seed, send_msgs(init_msgs)
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
|
|
|
|
|
|
| 222 |
|
| 223 |
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq]
|
| 224 |
mid = tokenizer.detokenize(mid_seq)
|
|
@@ -235,7 +211,7 @@ def run(model_name, tab, mid_seq, continuation_state, instruments, drum_kit, bpm
|
|
| 235 |
def cancel_run(model_name, mid_seq):
|
| 236 |
if mid_seq is None:
|
| 237 |
return None, None, []
|
| 238 |
-
tokenizer = models[model_name]
|
| 239 |
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq]
|
| 240 |
mid = tokenizer.detokenize(mid_seq)
|
| 241 |
audio = synthesizer.synthesis(MIDI.score2opus(mid))
|
|
@@ -248,11 +224,12 @@ def cancel_run(model_name, mid_seq):
|
|
| 248 |
return "output.mid", (44100, audio), send_msgs(end_msgs)
|
| 249 |
|
| 250 |
|
| 251 |
-
def undo_continuation(mid_seq, continuation_state):
|
| 252 |
if mid_seq is None or len(continuation_state) < 2:
|
| 253 |
return mid_seq, continuation_state, send_msgs([])
|
| 254 |
mid_seq = mid_seq[:continuation_state[-1]]
|
| 255 |
continuation_state = continuation_state[:-1]
|
|
|
|
| 256 |
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq]
|
| 257 |
end_msgs = [create_msg("visualizer_clear", tokenizer.version),
|
| 258 |
create_msg("visualizer_append", events),
|
|
@@ -293,21 +270,6 @@ def hf_hub_download_retry(repo_id, filename):
|
|
| 293 |
raise err
|
| 294 |
|
| 295 |
|
| 296 |
-
def get_tokenizer(config_name):
|
| 297 |
-
tv, size = config_name.split("-")
|
| 298 |
-
tv = tv[1:]
|
| 299 |
-
if tv[-1] == "o":
|
| 300 |
-
o = True
|
| 301 |
-
tv = tv[:-1]
|
| 302 |
-
else:
|
| 303 |
-
o = False
|
| 304 |
-
if tv not in ["v1", "v2"]:
|
| 305 |
-
raise ValueError(f"Unknown tokenizer version {tv}")
|
| 306 |
-
tokenizer = MIDITokenizer(tv)
|
| 307 |
-
tokenizer.set_optimise_midi(o)
|
| 308 |
-
return tokenizer
|
| 309 |
-
|
| 310 |
-
|
| 311 |
number2drum_kits = {-1: "None", 0: "Standard", 8: "Room", 16: "Power", 24: "Electric", 25: "TR-808", 32: "Jazz",
|
| 312 |
40: "Blush", 48: "Orchestra"}
|
| 313 |
patch2number = {v: k for k, v in MIDI.Number2patch.items()}
|
|
@@ -319,6 +281,7 @@ if __name__ == "__main__":
|
|
| 319 |
parser = argparse.ArgumentParser()
|
| 320 |
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
|
| 321 |
parser.add_argument("--port", type=int, default=7860, help="gradio server port")
|
|
|
|
| 322 |
parser.add_argument("--max-gen", type=int, default=1024, help="max")
|
| 323 |
opt = parser.parse_args()
|
| 324 |
soundfont_path = hf_hub_download_retry(repo_id="skytnt/midi-model", filename="soundfont.sf2")
|
|
@@ -331,14 +294,17 @@ if __name__ == "__main__":
|
|
| 331 |
"touhou finetune model (tv1-medium) by skytnt": ["skytnt/midi-model-ft", "touhou/", "tv1-medium"],
|
| 332 |
}
|
| 333 |
models = {}
|
| 334 |
-
|
|
|
|
|
|
|
| 335 |
for name, (repo_id, path, config) in models_info.items():
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
|
|
|
| 342 |
|
| 343 |
load_javascript()
|
| 344 |
app = gr.Blocks()
|
|
@@ -447,6 +413,6 @@ if __name__ == "__main__":
|
|
| 447 |
stop_btn.click(cancel_run, [input_model, output_midi_seq],
|
| 448 |
[output_midi, output_audio, js_msg],
|
| 449 |
cancels=run_event, queue=False)
|
| 450 |
-
undo_btn.click(undo_continuation, [output_midi_seq, output_continuation_state],
|
| 451 |
[output_midi_seq, output_continuation_state, js_msg], queue=False)
|
| 452 |
app.launch(server_port=opt.port, share=opt.share, inbrowser=True)
|
|
|
|
| 1 |
import argparse
|
| 2 |
import glob
|
| 3 |
import json
|
| 4 |
+
import os
|
| 5 |
import time
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
import numpy as np
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
import tqdm
|
| 12 |
from huggingface_hub import hf_hub_download
|
| 13 |
|
| 14 |
import MIDI
|
| 15 |
+
from midi_model import MIDIModel, MIDIModelConfig
|
| 16 |
from midi_synthesizer import MidiSynthesizer
|
|
|
|
| 17 |
|
| 18 |
MAX_SEED = np.iinfo(np.int32).max
|
| 19 |
in_space = os.getenv("SYSTEM") == "spaces"
|
| 20 |
|
| 21 |
|
| 22 |
+
@torch.inference_mode()
|
| 23 |
+
def generate(model: MIDIModel, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
disable_patch_change=False, disable_control_change=False, disable_channels=None, generator=None):
|
| 25 |
+
tokenizer = model.tokenizer
|
| 26 |
if disable_channels is not None:
|
| 27 |
disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels]
|
| 28 |
else:
|
| 29 |
disable_channels = []
|
|
|
|
|
|
|
| 30 |
max_token_seq = tokenizer.max_token_seq
|
| 31 |
if prompt is None:
|
| 32 |
+
input_tensor = torch.full((1, max_token_seq), tokenizer.pad_id, dtype=torch.long, device=model.device)
|
| 33 |
input_tensor[0, 0] = tokenizer.bos_id # bos
|
| 34 |
else:
|
| 35 |
prompt = prompt[:, :max_token_seq]
|
| 36 |
if prompt.shape[-1] < max_token_seq:
|
| 37 |
prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])),
|
| 38 |
mode="constant", constant_values=tokenizer.pad_id)
|
| 39 |
+
input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=model.device)
|
| 40 |
+
input_tensor = input_tensor.unsqueeze(0)
|
| 41 |
cur_len = input_tensor.shape[1]
|
| 42 |
+
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len)
|
| 43 |
with bar:
|
| 44 |
while cur_len < max_len:
|
| 45 |
end = False
|
| 46 |
+
hidden = model.forward(input_tensor)[0, -1].unsqueeze(0)
|
| 47 |
+
next_token_seq = None
|
| 48 |
event_name = ""
|
| 49 |
for i in range(max_token_seq):
|
| 50 |
+
mask = torch.zeros(tokenizer.vocab_size, dtype=torch.int64, device=model.device)
|
| 51 |
if i == 0:
|
| 52 |
mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id]
|
| 53 |
if disable_patch_change:
|
|
|
|
| 61 |
if param_name == "channel":
|
| 62 |
mask_ids = [i for i in mask_ids if i not in disable_channels]
|
| 63 |
mask[mask_ids] = 1
|
| 64 |
+
logits = model.forward_token(hidden, next_token_seq)[:, -1:]
|
| 65 |
+
scores = torch.softmax(logits / temp, dim=-1) * mask
|
| 66 |
+
sample = model.sample_top_p_k(scores, top_p, top_k, generator=generator)
|
| 67 |
if i == 0:
|
| 68 |
next_token_seq = sample
|
| 69 |
eid = sample.item()
|
|
|
|
| 72 |
break
|
| 73 |
event_name = tokenizer.id_events[eid]
|
| 74 |
else:
|
| 75 |
+
next_token_seq = torch.cat([next_token_seq, sample], dim=1)
|
| 76 |
if len(tokenizer.events[event_name]) == i:
|
| 77 |
break
|
| 78 |
if next_token_seq.shape[1] < max_token_seq:
|
| 79 |
+
next_token_seq = F.pad(next_token_seq, (0, max_token_seq - next_token_seq.shape[1]),
|
| 80 |
+
"constant", value=tokenizer.pad_id)
|
| 81 |
+
next_token_seq = next_token_seq.unsqueeze(1)
|
| 82 |
+
input_tensor = torch.cat([input_tensor, next_token_seq], dim=1)
|
| 83 |
cur_len += 1
|
| 84 |
bar.update(1)
|
| 85 |
+
yield next_token_seq.reshape(-1).cpu().numpy()
|
| 86 |
if end:
|
| 87 |
break
|
| 88 |
|
|
|
|
| 99 |
reduce_cc_st, remap_track_channel, add_default_instr, remove_empty_channels, seed, seed_rand,
|
| 100 |
gen_events, temp, top_p, top_k, allow_cc):
|
| 101 |
model = models[model_name]
|
| 102 |
+
tokenizer = model.tokenizer
|
| 103 |
bpm = int(bpm)
|
| 104 |
if time_sig == "auto":
|
| 105 |
time_sig = None
|
|
|
|
| 121 |
max_len = gen_events
|
| 122 |
if seed_rand:
|
| 123 |
seed = np.random.randint(0, MAX_SEED)
|
| 124 |
+
generator = torch.Generator(opt.device).manual_seed(seed)
|
| 125 |
disable_patch_change = False
|
| 126 |
disable_channels = None
|
| 127 |
if tab == 0:
|
|
|
|
| 177 |
init_msgs += [create_msg("visualizer_clear", tokenizer.version),
|
| 178 |
create_msg("visualizer_append", events)]
|
| 179 |
yield mid_seq, continuation_state, None, None, seed, send_msgs(init_msgs)
|
| 180 |
+
ctx = torch.amp.autocast(device_type=opt.device, dtype=torch.bfloat16, enabled=opt.device != "cpu")
|
| 181 |
+
with ctx:
|
| 182 |
+
midi_generator = generate(model, mid, max_len=max_len, temp=temp, top_p=top_p, top_k=top_k,
|
| 183 |
+
disable_patch_change=disable_patch_change, disable_control_change=not allow_cc,
|
| 184 |
+
disable_channels=disable_channels, generator=generator)
|
| 185 |
+
events = []
|
| 186 |
+
t = time.time() + 1
|
| 187 |
+
for i, token_seq in enumerate(midi_generator):
|
| 188 |
+
token_seq = token_seq.tolist()
|
| 189 |
+
mid_seq.append(token_seq)
|
| 190 |
+
events.append(tokenizer.tokens2event(token_seq))
|
| 191 |
+
ct = time.time()
|
| 192 |
+
if ct - t > 0.5:
|
| 193 |
+
yield (mid_seq, continuation_state, None, None, seed,
|
| 194 |
+
send_msgs([create_msg("visualizer_append", events),
|
| 195 |
+
create_msg("progress", [i + 1, gen_events])]))
|
| 196 |
+
t = ct
|
| 197 |
+
events = []
|
| 198 |
|
| 199 |
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq]
|
| 200 |
mid = tokenizer.detokenize(mid_seq)
|
|
|
|
| 211 |
def cancel_run(model_name, mid_seq):
|
| 212 |
if mid_seq is None:
|
| 213 |
return None, None, []
|
| 214 |
+
tokenizer = models[model_name].tokenizer
|
| 215 |
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq]
|
| 216 |
mid = tokenizer.detokenize(mid_seq)
|
| 217 |
audio = synthesizer.synthesis(MIDI.score2opus(mid))
|
|
|
|
| 224 |
return "output.mid", (44100, audio), send_msgs(end_msgs)
|
| 225 |
|
| 226 |
|
| 227 |
+
def undo_continuation(model_name, mid_seq, continuation_state):
|
| 228 |
if mid_seq is None or len(continuation_state) < 2:
|
| 229 |
return mid_seq, continuation_state, send_msgs([])
|
| 230 |
mid_seq = mid_seq[:continuation_state[-1]]
|
| 231 |
continuation_state = continuation_state[:-1]
|
| 232 |
+
tokenizer = models[model_name].tokenizer
|
| 233 |
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq]
|
| 234 |
end_msgs = [create_msg("visualizer_clear", tokenizer.version),
|
| 235 |
create_msg("visualizer_append", events),
|
|
|
|
| 270 |
raise err
|
| 271 |
|
| 272 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
number2drum_kits = {-1: "None", 0: "Standard", 8: "Room", 16: "Power", 24: "Electric", 25: "TR-808", 32: "Jazz",
|
| 274 |
40: "Blush", 48: "Orchestra"}
|
| 275 |
patch2number = {v: k for k, v in MIDI.Number2patch.items()}
|
|
|
|
| 281 |
parser = argparse.ArgumentParser()
|
| 282 |
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
|
| 283 |
parser.add_argument("--port", type=int, default=7860, help="gradio server port")
|
| 284 |
+
parser.add_argument("--device", type=str, default="cuda", help="device to run model")
|
| 285 |
parser.add_argument("--max-gen", type=int, default=1024, help="max")
|
| 286 |
opt = parser.parse_args()
|
| 287 |
soundfont_path = hf_hub_download_retry(repo_id="skytnt/midi-model", filename="soundfont.sf2")
|
|
|
|
| 294 |
"touhou finetune model (tv1-medium) by skytnt": ["skytnt/midi-model-ft", "touhou/", "tv1-medium"],
|
| 295 |
}
|
| 296 |
models = {}
|
| 297 |
+
if opt.device == "cuda":
|
| 298 |
+
torch.backends.cuda.enable_mem_efficient_sdp(True)
|
| 299 |
+
torch.backends.cuda.enable_flash_sdp(True)
|
| 300 |
for name, (repo_id, path, config) in models_info.items():
|
| 301 |
+
model_path = hf_hub_download_retry(repo_id=repo_id, filename=f"{path}model.ckpt")
|
| 302 |
+
model = MIDIModel(config=MIDIModelConfig.from_name(config))
|
| 303 |
+
ckpt = torch.load(model_path, map_location="cpu")
|
| 304 |
+
state_dict = ckpt.get("state_dict", ckpt)
|
| 305 |
+
model.load_state_dict(state_dict, strict=False)
|
| 306 |
+
model.to(device=opt.device, dtype=torch.bfloat16 if opt.device == "cuda" else torch.float32).eval()
|
| 307 |
+
models[name] = model
|
| 308 |
|
| 309 |
load_javascript()
|
| 310 |
app = gr.Blocks()
|
|
|
|
| 413 |
stop_btn.click(cancel_run, [input_model, output_midi_seq],
|
| 414 |
[output_midi, output_audio, js_msg],
|
| 415 |
cancels=run_event, queue=False)
|
| 416 |
+
undo_btn.click(undo_continuation, [input_model, output_midi_seq, output_continuation_state],
|
| 417 |
[output_midi_seq, output_continuation_state, js_msg], queue=False)
|
| 418 |
app.launch(server_port=opt.port, share=opt.share, inbrowser=True)
|
midi_model.py
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import torch
|
| 3 |
import torch.nn as nn
|
|
@@ -5,23 +7,61 @@ import torch.nn.functional as F
|
|
| 5 |
import tqdm
|
| 6 |
from transformers import LlamaModel, LlamaConfig
|
| 7 |
|
| 8 |
-
from midi_tokenizer import MIDITokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
|
| 11 |
class MIDIModel(nn.Module):
|
| 12 |
-
def __init__(self,
|
| 13 |
-
*args, **kwargs):
|
| 14 |
super(MIDIModel, self).__init__()
|
| 15 |
-
self.tokenizer = tokenizer
|
| 16 |
-
self.net = LlamaModel(
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
pad_token_id=tokenizer.pad_id, max_position_embeddings=4096))
|
| 20 |
-
self.net_token = LlamaModel(LlamaConfig(vocab_size=tokenizer.vocab_size,
|
| 21 |
-
hidden_size=n_embd, num_attention_heads=n_head // 4,
|
| 22 |
-
num_hidden_layers=n_layer // 4, intermediate_size=n_inner // 4,
|
| 23 |
-
pad_token_id=tokenizer.pad_id, max_position_embeddings=4096))
|
| 24 |
-
self.lm_head = nn.Linear(n_embd, tokenizer.vocab_size, bias=False)
|
| 25 |
self.device = "cpu"
|
| 26 |
|
| 27 |
def to(self, *args, **kwargs):
|
|
@@ -71,7 +111,7 @@ class MIDIModel(nn.Module):
|
|
| 71 |
return next_token
|
| 72 |
|
| 73 |
@torch.inference_mode()
|
| 74 |
-
def generate(self, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
|
| 75 |
tokenizer = self.tokenizer
|
| 76 |
max_token_seq = tokenizer.max_token_seq
|
| 77 |
if prompt is None:
|
|
@@ -86,7 +126,7 @@ class MIDIModel(nn.Module):
|
|
| 86 |
input_tensor = input_tensor.unsqueeze(0)
|
| 87 |
cur_len = input_tensor.shape[1]
|
| 88 |
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len)
|
| 89 |
-
with bar
|
| 90 |
while cur_len < max_len:
|
| 91 |
end = False
|
| 92 |
hidden = self.forward(input_tensor)[0, -1].unsqueeze(0)
|
|
@@ -123,4 +163,4 @@ class MIDIModel(nn.Module):
|
|
| 123 |
bar.update(1)
|
| 124 |
if end:
|
| 125 |
break
|
| 126 |
-
return input_tensor[0].cpu().numpy()
|
|
|
|
| 1 |
+
from typing import Union
|
| 2 |
+
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
| 5 |
import torch.nn as nn
|
|
|
|
| 7 |
import tqdm
|
| 8 |
from transformers import LlamaModel, LlamaConfig
|
| 9 |
|
| 10 |
+
from midi_tokenizer import MIDITokenizerV1, MIDITokenizerV2, MIDITokenizer
|
| 11 |
+
|
| 12 |
+
config_name_list = ["tv1-medium", "tv2-medium", "tv2o-medium", "tv2-large", "tv2o-large"]
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class MIDIModelConfig:
|
| 16 |
+
def __init__(self, tokenizer: Union[MIDITokenizerV1, MIDITokenizerV2],
|
| 17 |
+
net_config: LlamaConfig, net_token_config: LlamaConfig):
|
| 18 |
+
self.tokenizer = tokenizer
|
| 19 |
+
self.net_config = net_config
|
| 20 |
+
self.net_token_config = net_token_config
|
| 21 |
+
self.n_embd = net_token_config.hidden_size
|
| 22 |
+
|
| 23 |
+
@staticmethod
|
| 24 |
+
def get_config(tokenizer_ver="v2", optimise_midi=True, n_layer=12, n_head=16, n_embd=1024, n_inner=4096):
|
| 25 |
+
tokenizer = MIDITokenizer(tokenizer_ver)
|
| 26 |
+
tokenizer.set_optimise_midi(optimise_midi)
|
| 27 |
+
net_config = LlamaConfig(vocab_size=tokenizer.vocab_size,
|
| 28 |
+
hidden_size=n_embd, num_attention_heads=n_head,
|
| 29 |
+
num_hidden_layers=n_layer, intermediate_size=n_inner,
|
| 30 |
+
pad_token_id=tokenizer.pad_id, max_position_embeddings=4096)
|
| 31 |
+
net_token_config = LlamaConfig(vocab_size=tokenizer.vocab_size,
|
| 32 |
+
hidden_size=n_embd, num_attention_heads=n_head // 4,
|
| 33 |
+
num_hidden_layers=n_layer // 4, intermediate_size=n_inner // 4,
|
| 34 |
+
pad_token_id=tokenizer.pad_id, max_position_embeddings=4096)
|
| 35 |
+
return MIDIModelConfig(tokenizer, net_config, net_token_config)
|
| 36 |
+
|
| 37 |
+
@staticmethod
|
| 38 |
+
def from_name(name="tv2o-medium"):
|
| 39 |
+
tv, size = name.split("-")
|
| 40 |
+
tv = tv[1:]
|
| 41 |
+
if tv[-1] == "o":
|
| 42 |
+
o = True
|
| 43 |
+
tv = tv[:-1]
|
| 44 |
+
else:
|
| 45 |
+
o = False
|
| 46 |
+
if tv not in ["v1", "v2"]:
|
| 47 |
+
raise ValueError(f"Unknown tokenizer version {tv}")
|
| 48 |
+
if size == "medium":
|
| 49 |
+
return MIDIModelConfig.get_config(tokenizer_ver=tv, optimise_midi=o,
|
| 50 |
+
n_layer=12, n_head=16, n_embd=1024, n_inner=4096)
|
| 51 |
+
elif size == "large":
|
| 52 |
+
return MIDIModelConfig.get_config(tokenizer_ver=tv, optimise_midi=o,
|
| 53 |
+
n_layer=24, n_head=16, n_embd=1024, n_inner=4096)
|
| 54 |
+
else:
|
| 55 |
+
raise ValueError(f"Unknown model size {size}")
|
| 56 |
|
| 57 |
|
| 58 |
class MIDIModel(nn.Module):
|
| 59 |
+
def __init__(self, config: MIDIModelConfig, *args, **kwargs):
|
|
|
|
| 60 |
super(MIDIModel, self).__init__()
|
| 61 |
+
self.tokenizer = config.tokenizer
|
| 62 |
+
self.net = LlamaModel(config.net_config)
|
| 63 |
+
self.net_token = LlamaModel(config.net_token_config)
|
| 64 |
+
self.lm_head = nn.Linear(config.n_embd, self.tokenizer.vocab_size, bias=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
self.device = "cpu"
|
| 66 |
|
| 67 |
def to(self, *args, **kwargs):
|
|
|
|
| 111 |
return next_token
|
| 112 |
|
| 113 |
@torch.inference_mode()
|
| 114 |
+
def generate(self, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20, generator=None):
|
| 115 |
tokenizer = self.tokenizer
|
| 116 |
max_token_seq = tokenizer.max_token_seq
|
| 117 |
if prompt is None:
|
|
|
|
| 126 |
input_tensor = input_tensor.unsqueeze(0)
|
| 127 |
cur_len = input_tensor.shape[1]
|
| 128 |
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len)
|
| 129 |
+
with bar:
|
| 130 |
while cur_len < max_len:
|
| 131 |
end = False
|
| 132 |
hidden = self.forward(input_tensor)[0, -1].unsqueeze(0)
|
|
|
|
| 163 |
bar.update(1)
|
| 164 |
if end:
|
| 165 |
break
|
| 166 |
+
return input_tensor[0].cpu().numpy()
|
requirements.txt
CHANGED
|
@@ -1,6 +1,8 @@
|
|
|
|
|
| 1 |
Pillow
|
| 2 |
numpy
|
| 3 |
-
|
|
|
|
| 4 |
gradio==4.43.0
|
| 5 |
pyfluidsynth
|
| 6 |
tqdm
|
|
|
|
| 1 |
+
--extra-index-url https://download.pytorch.org/whl/cu124
|
| 2 |
Pillow
|
| 3 |
numpy
|
| 4 |
+
torch
|
| 5 |
+
transformers>=4.36
|
| 6 |
gradio==4.43.0
|
| 7 |
pyfluidsynth
|
| 8 |
tqdm
|