Spaces:
Sleeping
Sleeping
Updare retrive creation
Browse files- seminar_edition_ai.py +13 -0
seminar_edition_ai.py
CHANGED
|
@@ -278,6 +278,19 @@ def predictArgumentQuestionBuild(questionAnswer, llmModelList = []):
|
|
| 278 |
)
|
| 279 |
global retriever
|
| 280 |
global HISTORY_ANSWER
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
answer = askQuestionEx(
|
| 282 |
"",
|
| 283 |
chain,
|
|
|
|
| 278 |
)
|
| 279 |
global retriever
|
| 280 |
global HISTORY_ANSWER
|
| 281 |
+
|
| 282 |
+
if retriever == None:
|
| 283 |
+
doc = Document(page_content="text", metadata={"source": "local"})
|
| 284 |
+
|
| 285 |
+
vectorstore = Chroma.from_documents(
|
| 286 |
+
documents=[doc],
|
| 287 |
+
embedding=embed_model,
|
| 288 |
+
persist_directory="chroma_db_dir_sermon", # Local mode with in-memory storage only
|
| 289 |
+
collection_name="sermon_lab_ai"
|
| 290 |
+
)
|
| 291 |
+
retriever = vectorstore.as_retriever(
|
| 292 |
+
search_kwargs={"k": 3}
|
| 293 |
+
)
|
| 294 |
answer = askQuestionEx(
|
| 295 |
"",
|
| 296 |
chain,
|