Spaces:
Runtime error
Runtime error
| import io | |
| import gradio as gr | |
| import matplotlib.pyplot as plt | |
| import requests, validators | |
| import torch | |
| import pathlib | |
| from PIL import Image | |
| from transformers import AutoFeatureExtractor, YolosForObjectDetection, DetrForObjectDetection | |
| import os | |
| os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" | |
| # colors for visualization | |
| COLORS = [ | |
| [0.000, 0.447, 0.741], | |
| [0.850, 0.325, 0.098], | |
| [0.929, 0.694, 0.125], | |
| [0.494, 0.184, 0.556], | |
| [0.466, 0.674, 0.188], | |
| [0.301, 0.745, 0.933] | |
| ] | |
| def make_prediction(img, feature_extractor, model): | |
| inputs = feature_extractor(img, return_tensors="pt") | |
| outputs = model(**inputs) | |
| img_size = torch.tensor([tuple(reversed(img.size))]) | |
| processed_outputs = feature_extractor.post_process(outputs, img_size) | |
| return processed_outputs[0] | |
| def fig2img(fig): | |
| buf = io.BytesIO() | |
| fig.savefig(buf) | |
| buf.seek(0) | |
| pil_img = Image.open(buf) | |
| basewidth = 750 | |
| wpercent = (basewidth/float(pil_img.size[0])) | |
| hsize = int((float(pil_img.size[1])*float(wpercent))) | |
| img = pil_img.resize((basewidth,hsize), Image.Resampling.LANCZOS) | |
| return img | |
| def visualize_prediction(img, output_dict, threshold=0.5, id2label=None): | |
| keep = output_dict["scores"] > threshold | |
| boxes = output_dict["boxes"][keep].tolist() | |
| scores = output_dict["scores"][keep].tolist() | |
| labels = output_dict["labels"][keep].tolist() | |
| if id2label is not None: | |
| labels = [id2label[x] for x in labels] | |
| plt.figure(figsize=(50, 50)) | |
| plt.imshow(img) | |
| ax = plt.gca() | |
| colors = COLORS * 100 | |
| for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors): | |
| if label == 'license-plates': | |
| ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=10)) | |
| ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=60, bbox=dict(facecolor="yellow", alpha=0.8)) | |
| plt.axis("off") | |
| return fig2img(plt.gcf()) | |
| def get_original_image(url_input): | |
| if validators.url(url_input): | |
| image = Image.open(requests.get(url_input, stream=True).raw) | |
| return image | |
| def detect_objects(model_name,url_input,image_input,webcam_input,threshold): | |
| #Extract model and feature extractor | |
| feature_extractor = AutoFeatureExtractor.from_pretrained(model_name) | |
| if "yolos" in model_name: | |
| model = YolosForObjectDetection.from_pretrained(model_name) | |
| elif "detr" in model_name: | |
| model = DetrForObjectDetection.from_pretrained(model_name) | |
| if validators.url(url_input): | |
| image = get_original_image(url_input) | |
| elif image_input: | |
| image = image_input | |
| elif webcam_input: | |
| image = webcam_input | |
| #Make prediction | |
| processed_outputs = make_prediction(image, feature_extractor, model) | |
| #Visualize prediction | |
| viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label) | |
| return viz_img | |
| def set_example_image(example: list) -> dict: | |
| return gr.Image.update(value=example[0]) | |
| def set_example_url(example: list) -> dict: | |
| return gr.Textbox.update(value=example[0]), gr.Image.update(value=get_original_image(example[0])) | |
| title = """<h1 id="title">License Plate Detection with YOLOS</h1>""" | |
| models = ["nickmuchi/yolos-small-finetuned-license-plate-detection","nickmuchi/detr-resnet50-license-plate-detection"] | |
| urls = ["https://drive.google.com/uc?id=1j9VZQ4NDS4gsubFf3m2qQoTMWLk552bQ","https://drive.google.com/uc?id=1p9wJIqRz3W50e2f_A0D8ftla8hoXz4T5"] | |
| images = [[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.j*g'))] | |
| css = ''' | |
| h1#title { | |
| text-align: center; | |
| } | |
| ''' | |
| demo = gr.Blocks(css=css) | |
| with demo: | |
| gr.Markdown(title) | |
| options = gr.Dropdown(choices=models,label='Object Detection Model',value=models[0],show_label=True) | |
| slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.5,step=0.1,label='Prediction Threshold') | |
| with gr.Tabs(): | |
| with gr.TabItem('Image URL'): | |
| with gr.Row(): | |
| with gr.Column(): | |
| url_input = gr.Textbox(lines=2,label='Enter valid image URL here..') | |
| original_image = gr.Image() | |
| url_input.change(get_original_image, url_input, original_image) | |
| with gr.Column(): | |
| img_output_from_url = gr.Image() | |
| with gr.Row(): | |
| example_url = gr.Examples(examples=urls,inputs=[url_input]) | |
| url_but = gr.Button('Detect') | |
| with gr.TabItem('Image Upload'): | |
| with gr.Row(): | |
| img_input = gr.Image(type='pil') | |
| img_output_from_upload= gr.Image() | |
| with gr.Row(): | |
| example_images = gr.Examples(examples=images,inputs=[img_input]) | |
| img_but = gr.Button('Detect') | |
| with gr.TabItem('WebCam'): | |
| with gr.Row(): | |
| web_input = gr.Image(source='webcam',type='pil',streaming=True) | |
| img_output_from_webcam= gr.Image() | |
| cam_but = gr.Button('Detect') | |
| url_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_url],queue=True) | |
| img_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_upload],queue=True) | |
| cam_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_webcam],queue=True) | |
| gr.Markdown("") | |
| demo.launch(debug=True,enable_queue=True) |