Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,7 +8,8 @@ from PIL import Image
|
|
| 8 |
from transformers import AutoFeatureExtractor, YolosForObjectDetection, DetrForObjectDetection
|
| 9 |
import os
|
| 10 |
|
| 11 |
-
|
|
|
|
| 12 |
|
| 13 |
# colors for visualization
|
| 14 |
COLORS = [
|
|
@@ -33,11 +34,12 @@ def fig2img(fig):
|
|
| 33 |
buf.seek(0)
|
| 34 |
pil_img = Image.open(buf)
|
| 35 |
basewidth = 750
|
| 36 |
-
wpercent = (basewidth
|
| 37 |
-
hsize = int((float(pil_img.size[1])
|
| 38 |
-
img = pil_img.resize((basewidth,
|
| 39 |
return img
|
| 40 |
|
|
|
|
| 41 |
def visualize_prediction(img, output_dict, threshold=0.5, id2label=None):
|
| 42 |
keep = output_dict["scores"] > threshold
|
| 43 |
boxes = output_dict["boxes"][keep].tolist()
|
|
@@ -45,7 +47,9 @@ def visualize_prediction(img, output_dict, threshold=0.5, id2label=None):
|
|
| 45 |
labels = output_dict["labels"][keep].tolist()
|
| 46 |
|
| 47 |
if id2label is not None:
|
|
|
|
| 48 |
labels = [id2label[x] for x in labels]
|
|
|
|
| 49 |
|
| 50 |
plt.figure(figsize=(50, 50))
|
| 51 |
plt.imshow(img)
|
|
@@ -57,45 +61,66 @@ def visualize_prediction(img, output_dict, threshold=0.5, id2label=None):
|
|
| 57 |
ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=60, bbox=dict(facecolor="yellow", alpha=0.8))
|
| 58 |
plt.axis("off")
|
| 59 |
return fig2img(plt.gcf())
|
| 60 |
-
|
| 61 |
def get_original_image(url_input):
|
| 62 |
if validators.url(url_input):
|
| 63 |
image = Image.open(requests.get(url_input, stream=True).raw)
|
|
|
|
| 64 |
return image
|
| 65 |
|
| 66 |
-
def detect_objects(model_name,
|
| 67 |
-
|
|
|
|
| 68 |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
|
|
|
| 69 |
if "yolos" in model_name:
|
| 70 |
model = YolosForObjectDetection.from_pretrained(model_name)
|
| 71 |
elif "detr" in model_name:
|
| 72 |
model = DetrForObjectDetection.from_pretrained(model_name)
|
|
|
|
| 73 |
if validators.url(url_input):
|
| 74 |
image = get_original_image(url_input)
|
| 75 |
-
|
|
|
|
| 76 |
image = image_input
|
| 77 |
-
|
|
|
|
| 78 |
image = webcam_input
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
# Make prediction
|
| 82 |
processed_outputs = make_prediction(image, feature_extractor, model)
|
| 83 |
-
|
|
|
|
| 84 |
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
|
|
|
|
| 85 |
return viz_img
|
| 86 |
-
|
| 87 |
def set_example_image(example: list) -> dict:
|
| 88 |
return gr.Image.update(value=example[0])
|
| 89 |
|
| 90 |
def set_example_url(example: list) -> dict:
|
| 91 |
return gr.Textbox.update(value=example[0]), gr.Image.update(value=get_original_image(example[0]))
|
| 92 |
|
| 93 |
-
title = """<h1 id="title">License Plate Detection with YOLOS</h1>"""
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
images = [[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.j*g'))]
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
css = '''
|
| 100 |
h1#title {
|
| 101 |
text-align: center;
|
|
@@ -104,41 +129,51 @@ h1#title {
|
|
| 104 |
demo = gr.Blocks(css=css)
|
| 105 |
|
| 106 |
with demo:
|
| 107 |
-
gr.Markdown(title)
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
| 110 |
|
| 111 |
with gr.Tabs():
|
| 112 |
with gr.TabItem('Image URL'):
|
| 113 |
with gr.Row():
|
| 114 |
with gr.Column():
|
| 115 |
-
url_input = gr.Textbox(lines=2,
|
| 116 |
-
original_image = gr.Image()
|
| 117 |
url_input.change(get_original_image, url_input, original_image)
|
| 118 |
with gr.Column():
|
| 119 |
-
img_output_from_url = gr.Image()
|
|
|
|
| 120 |
with gr.Row():
|
| 121 |
-
example_url = gr.Examples(examples=urls,
|
|
|
|
|
|
|
| 122 |
url_but = gr.Button('Detect')
|
| 123 |
|
| 124 |
with gr.TabItem('Image Upload'):
|
| 125 |
with gr.Row():
|
| 126 |
-
img_input = gr.Image(type='pil')
|
| 127 |
-
img_output_from_upload
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
| 130 |
img_but = gr.Button('Detect')
|
| 131 |
|
| 132 |
with gr.TabItem('WebCam'):
|
| 133 |
with gr.Row():
|
| 134 |
-
web_input = gr.
|
| 135 |
-
img_output_from_webcam
|
|
|
|
| 136 |
cam_but = gr.Button('Detect')
|
| 137 |
|
| 138 |
-
url_but.click(detect_objects,
|
| 139 |
-
img_but.click(detect_objects,
|
| 140 |
-
cam_but.click(detect_objects,
|
| 141 |
|
| 142 |
gr.Markdown("")
|
| 143 |
|
| 144 |
-
|
|
|
|
|
|
| 8 |
from transformers import AutoFeatureExtractor, YolosForObjectDetection, DetrForObjectDetection
|
| 9 |
import os
|
| 10 |
|
| 11 |
+
|
| 12 |
+
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
|
| 13 |
|
| 14 |
# colors for visualization
|
| 15 |
COLORS = [
|
|
|
|
| 34 |
buf.seek(0)
|
| 35 |
pil_img = Image.open(buf)
|
| 36 |
basewidth = 750
|
| 37 |
+
wpercent = (basewidth/float(pil_img.size[0]))
|
| 38 |
+
hsize = int((float(pil_img.size[1])*float(wpercent)))
|
| 39 |
+
img = pil_img.resize((basewidth,hsize), Image.Resampling.LANCZOS)
|
| 40 |
return img
|
| 41 |
|
| 42 |
+
|
| 43 |
def visualize_prediction(img, output_dict, threshold=0.5, id2label=None):
|
| 44 |
keep = output_dict["scores"] > threshold
|
| 45 |
boxes = output_dict["boxes"][keep].tolist()
|
|
|
|
| 47 |
labels = output_dict["labels"][keep].tolist()
|
| 48 |
|
| 49 |
if id2label is not None:
|
| 50 |
+
|
| 51 |
labels = [id2label[x] for x in labels]
|
| 52 |
+
|
| 53 |
|
| 54 |
plt.figure(figsize=(50, 50))
|
| 55 |
plt.imshow(img)
|
|
|
|
| 61 |
ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=60, bbox=dict(facecolor="yellow", alpha=0.8))
|
| 62 |
plt.axis("off")
|
| 63 |
return fig2img(plt.gcf())
|
| 64 |
+
|
| 65 |
def get_original_image(url_input):
|
| 66 |
if validators.url(url_input):
|
| 67 |
image = Image.open(requests.get(url_input, stream=True).raw)
|
| 68 |
+
|
| 69 |
return image
|
| 70 |
|
| 71 |
+
def detect_objects(model_name,url_input,image_input,webcam_input,threshold):
|
| 72 |
+
|
| 73 |
+
#Extract model and feature extractor
|
| 74 |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
| 75 |
+
|
| 76 |
if "yolos" in model_name:
|
| 77 |
model = YolosForObjectDetection.from_pretrained(model_name)
|
| 78 |
elif "detr" in model_name:
|
| 79 |
model = DetrForObjectDetection.from_pretrained(model_name)
|
| 80 |
+
|
| 81 |
if validators.url(url_input):
|
| 82 |
image = get_original_image(url_input)
|
| 83 |
+
|
| 84 |
+
elif image_input:
|
| 85 |
image = image_input
|
| 86 |
+
|
| 87 |
+
elif webcam_input:
|
| 88 |
image = webcam_input
|
| 89 |
+
|
| 90 |
+
#Make prediction
|
|
|
|
| 91 |
processed_outputs = make_prediction(image, feature_extractor, model)
|
| 92 |
+
|
| 93 |
+
#Visualize prediction
|
| 94 |
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
|
| 95 |
+
|
| 96 |
return viz_img
|
| 97 |
+
|
| 98 |
def set_example_image(example: list) -> dict:
|
| 99 |
return gr.Image.update(value=example[0])
|
| 100 |
|
| 101 |
def set_example_url(example: list) -> dict:
|
| 102 |
return gr.Textbox.update(value=example[0]), gr.Image.update(value=get_original_image(example[0]))
|
| 103 |
|
|
|
|
| 104 |
|
| 105 |
+
title = """<h1 id="title">License Plate Detection with YOLOS</h1>"""
|
| 106 |
+
|
| 107 |
+
description = """
|
| 108 |
+
YOLOS is a Vision Transformer (ViT) trained using the DETR loss. Despite its simplicity, a base-sized YOLOS model is able to achieve 42 AP on COCO validation 2017 (similar to DETR and more complex frameworks such as Faster R-CNN).
|
| 109 |
+
The YOLOS model was fine-tuned on COCO 2017 object detection (118k annotated images). It was introduced in the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Fang et al. and first released in [this repository](https://github.com/hustvl/YOLOS).
|
| 110 |
+
This model was further fine-tuned on the [Car license plate dataset]("https://www.kaggle.com/datasets/andrewmvd/car-plate-detection") from Kaggle. The dataset consists of 443 images of vehicle with annotations categorised as "Vehicle" and "Rego Plates". The model was trained for 200 epochs on a single GPU.
|
| 111 |
+
Links to HuggingFace Models:
|
| 112 |
+
- [nickmuchi/yolos-small-rego-plates-detection](https://huggingface.co/nickmuchi/yolos-small-rego-plates-detection)
|
| 113 |
+
- [hustlv/yolos-small](https://huggingface.co/hustlv/yolos-small)
|
| 114 |
+
"""
|
| 115 |
+
|
| 116 |
+
models = ["nickmuchi/yolos-small-finetuned-license-plate-detection","nickmuchi/detr-resnet50-license-plate-detection"]
|
| 117 |
+
urls = ["https://drive.google.com/uc?id=1j9VZQ4NDS4gsubFf3m2qQoTMWLk552bQ","https://drive.google.com/uc?id=1p9wJIqRz3W50e2f_A0D8ftla8hoXz4T5"]
|
| 118 |
images = [[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.j*g'))]
|
| 119 |
|
| 120 |
+
twitter_link = """
|
| 121 |
+
[](https://twitter.com/nickmuchi)
|
| 122 |
+
"""
|
| 123 |
+
|
| 124 |
css = '''
|
| 125 |
h1#title {
|
| 126 |
text-align: center;
|
|
|
|
| 129 |
demo = gr.Blocks(css=css)
|
| 130 |
|
| 131 |
with demo:
|
| 132 |
+
gr.Markdown(title)
|
| 133 |
+
gr.Markdown(description)
|
| 134 |
+
gr.Markdown(twitter_link)
|
| 135 |
+
options = gr.Dropdown(choices=models,label='Object Detection Model',value=models[0],show_label=True)
|
| 136 |
+
slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.5,step=0.1,label='Prediction Threshold')
|
| 137 |
|
| 138 |
with gr.Tabs():
|
| 139 |
with gr.TabItem('Image URL'):
|
| 140 |
with gr.Row():
|
| 141 |
with gr.Column():
|
| 142 |
+
url_input = gr.Textbox(lines=2,label='Enter valid image URL here..')
|
| 143 |
+
original_image = gr.Image(shape=(750,750))
|
| 144 |
url_input.change(get_original_image, url_input, original_image)
|
| 145 |
with gr.Column():
|
| 146 |
+
img_output_from_url = gr.Image(shape=(750,750))
|
| 147 |
+
|
| 148 |
with gr.Row():
|
| 149 |
+
example_url = gr.Examples(examples=urls,inputs=[url_input])
|
| 150 |
+
|
| 151 |
+
|
| 152 |
url_but = gr.Button('Detect')
|
| 153 |
|
| 154 |
with gr.TabItem('Image Upload'):
|
| 155 |
with gr.Row():
|
| 156 |
+
img_input = gr.Image(type='pil',shape=(750,750))
|
| 157 |
+
img_output_from_upload= gr.Image(shape=(750,750))
|
| 158 |
+
|
| 159 |
+
with gr.Row():
|
| 160 |
+
example_images = gr.Examples(examples=images,inputs=[img_input])
|
| 161 |
+
|
| 162 |
+
|
| 163 |
img_but = gr.Button('Detect')
|
| 164 |
|
| 165 |
with gr.TabItem('WebCam'):
|
| 166 |
with gr.Row():
|
| 167 |
+
web_input = gr.Image(source='webcam',type='pil',shape=(750,750),streaming=True)
|
| 168 |
+
img_output_from_webcam= gr.Image(shape=(750,750))
|
| 169 |
+
|
| 170 |
cam_but = gr.Button('Detect')
|
| 171 |
|
| 172 |
+
url_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_url],queue=True)
|
| 173 |
+
img_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_upload],queue=True)
|
| 174 |
+
cam_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_webcam],queue=True)
|
| 175 |
|
| 176 |
gr.Markdown("")
|
| 177 |
|
| 178 |
+
|
| 179 |
+
demo.launch(debug=True,enable_queue=True)
|