Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from diffusers import StableDiffusionControlNetPipeline, ControlNetModel | |
| from PIL import Image | |
| import numpy as np | |
| def load_model(): | |
| controlnet = ControlNetModel.from_pretrained("Kwai-Kolors/Kolors-Virtual-Try-On") | |
| pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "Kwai-Kolors/Kolors-Virtual-Try-On", | |
| controlnet=controlnet, | |
| torch_dtype=torch.float16 | |
| ) | |
| if torch.cuda.is_available(): | |
| pipe = pipe.to("cuda") | |
| return pipe | |
| # Model'i global olarak yükle | |
| try: | |
| model = load_model() | |
| print("Model başarıyla yüklendi!") | |
| except Exception as e: | |
| print(f"Model yüklenirken hata: {str(e)}") | |
| def virtual_try_on(person_image, garment_image): | |
| """ | |
| Virtual try-on process | |
| """ | |
| try: | |
| # Resimleri uygun formata dönüştür | |
| if person_image is None or garment_image is None: | |
| return None, "Error: Both images are required" | |
| # Model inference | |
| output = model( | |
| person_image, | |
| garment_image, | |
| num_inference_steps=30, | |
| guidance_scale=7.5 | |
| ) | |
| # Sonuç resmini al | |
| result_image = output.images[0] | |
| return result_image, "Success" | |
| except Exception as e: | |
| return None, f"Error: {str(e)}" | |
| # Gradio arayüzü | |
| demo = gr.Interface( | |
| fn=virtual_try_on, | |
| inputs=[ | |
| gr.Image(type="pil", label="Person Image"), | |
| gr.Image(type="pil", label="Garment Image") | |
| ], | |
| outputs=[ | |
| gr.Image(type="pil", label="Result"), | |
| gr.Text(label="Status") | |
| ], | |
| title="Virtual Try-On", | |
| description="Upload a person image and a garment image to see how the garment would look on the person." | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |